
,4
,,F

C_

MAC-TR-47 (THESIS)

SYMBOLIC INTEGRATION

by

Joel Moses

December 1967

r_ ._¸_ _
#b;

b'Zi; ""'_e
& , ,

Pro j ect" '_C

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

,_ (ACCESSION NUMBER) (THRU)

,dcd. _._:._:// v t>
f_IASA, CR O_"T_X OR AD NUMBER) (CATEGORY)

Massachusetts Institute of Technology

Project MAC

545 Technology Square

Cambridge, Massachusetts

02139

Work reported herein was supported in part by Project

MAC, an M.I.T. research project sponsored by the Advanced

Research Projects Agency, Department of Defense, under

Office of Naval Research Contract Nonr-4102(01).

Reproduction of this report, in whole or in part, is

permitted for any purpose of the United States Government.

Government contractors may obtain copies of this report from

the Defense Documentation Center, Defense Supply Agency, Cameron

Station, Alexandria, Virginia 22314. Response will be expedited

if requests are submitted on DDC Form i, copies of which are

available from the office in your activity which has been

established as the focal point for requesting DDC services.

• Ot_er U.S. citizens and organizations may obtain copies of

this re_ort from the Clearinghouse for Federal Scientific and

Technical Information (CFSTI), Sills Building, 5285 Port Royal

Road, Springfield, Virginia 22151.

AUTHOR'S NOTE

A condensation of this and other relevant work, in the field

of algebraic manipulation, is being written in collaboration with

William A. Martin of the Department of Electrical Engineering and

will be publlshed next year by M.I.T. Press.

SYMBOLIC INTEGRATION

by

Joel Moses

B.A., Columbia College
(1962)

M.A., Graduate Faculties, Columbia University

(1963)

SUBMITTED IN PARTIAL FULFILI_MENT

OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF

PHILOSOPHy

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

September, 1967

Signature of Author De artme t oSmati_mb
p" " "ner 1 , 1967

Certified by. . ._ _

/_ _ _ Thesis Supervisor

Accepted by _. _./_..._.. _. J._

Chairman_ Departmental Committee

on Graduate Students

SYMBOLIC INTEGRATION

by

Joel Moses

Submitted to the Department of Mathematics on September i, 1967 in

partial fulfillment of the requirements for the degree of Doctor of

Philosophy

ABSTRACT

SIN and SOLDIER are heuristic programs written in LISP which solve

symbolic integration problems. SIN (Symbolic INtegrator) solves inde-

finite integration problems at the difficulty approaching those in the

larger int'egral tables. SIN contains several more methods than are used

in the previous symbolic integration program SAINT, and solves most of

the problems attempted by SAINT in less than one second. SOLDIER (SOLu-

tion of Ordinary Differential Equations Routine) solves first order,

first degree ordinary differential equations at the level of a good col-

lege sophomore and at an average of about five seconds per problem attempted.

The differences in philosophy and operation between SAINT and SIN are

described, and suggestions for extending the work presented are made.

Thesis Supervisor: Marvin L. Minsky

Title: Professor of Electrical Engineering

ACKNOWLEDGMENTS

Theworkreportedhereinwassupportedin partbyProjectMAC,an

HIT research program sponsored by the Advanced Research Projects Agency,

Department of Defense_ under Office of Naval Research, contract Number

Nonr-4102(01), in part by the Joint Services Electronics Program (con-

tract DP 28-043-AMC-02536 (E)), the National Science Foundation (Grant

GP-2495), and the National Aeronautics and Space Administration (Grant

NsG-496). Reproduction in whole or in part is permitted for any purpose

of the United States Government.

I wish to thank Professor Marvin Minsky, the supervisor of this

thesis, and Professors Seymour Papert and Joseph Weizenbaum, the other

members of my thesis committee, for their criticism and guidance of this

work. I also wish to thank William Martin for many constructive discus-

sions and suggestions. To Carl Engelman, Michael Manove, and Stephen

Bloom goes my gratitude for the use of their program, and to Ima, Laila

and Sandy it goes for having to read my handwriting.

TABLEOF CONTENTS

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Abstract 1

Acknowledgments 2

Table of Contents 3

Dedication 4

I Introduction 5

2 How SIN differs from SAINT Ii

3 SCHATCHEN - A Matching program for Algebraic Expressions 22

4 SIN - The Symbolic Integrator 62

5 The Edge Heuristic 107

6 Solution of Ordinary Differential Equations 124

7 Conclusions and Suggestions for Further Work 140

A ITALU - An Integral Table Look-Up 153

B Recursively Unsolvable Results in Integration 160

C SIN's Performance on SAINT's Problems 172

D Solution of Problems Proposed by Mclntosh 176

E An Experiment with SOLDIER 180

F Listings of the Programs 193

Bibliography 262

Biography of the Author 267

To the descendants of the Maharal

who are endeavoring to build a Golem.

Chapter 1

Introduction

In the last few years there has been a surge of activity on

the design of algebraic manipulation systems*. Algebraic manipu-

lation systems are computer based systems which facilitate the

handling of algebraic and analytic expressions. One of the oft

stated capabilities desired of such systems is an ability to per-

form symbolic integration. Besides the obvious value of such a

capability in symbolic calculations there is the possibility of em-

ploying it as an adjunct to numerical integration programs for

functions which involve parameters. In such cases a single accur-

ate symbolic integration is likely to be preferable to numerical

integrations taken over the range of values of the parameters. An-

other reason for the interest in symbolic integration programs is

the fact that the ease with which such a program could be written

in a proposed language for algebraic manipulation has become an in-

formal test of the power of that language. Yet the only previously

announced symbolic integration program with any claim to generality

is SAINT (Symbolic Automatic INTegrator), written as a doctoral

dissertation by Slagle in 1961 _. Slagle described SAINT as be-

ing as powerful as a good freshman calculus student. Thus the un-

modified SAINT program does not appear powerful enough to warrant

*For a survey of the field of algebraic manipulation see Sammet [55].

For a bibliography of work in the field up to 1966 see Sammet _.

its usein a practicalalgebraicmanipulationsystem.In 1964a

programwhichintegratesrationalfunctionswaswrittenfor the

MATHLABprojectbyManove,Bloom,andEngelmanof theMITRECorpor-

ation [36]. Thisprogramfilled animportantgapin thecapabili-

ties of SAINT.Byusingsucha programit appearedpossibleto

write amorepowerfulintegrationprogramthanSAINT.Furthermore

it seemedthatprogramswhichsolveordinarydifferential equations
at leastaswell assophomorecollegestudents(anda gooddeal

faster thansuchstudents)couldalsobewritten. Suchprograms

becamethegoalsof ourresearch.

Weusedtherationalfunctionpackageof MATHLABin writinga

secondsymbolicintegrationprogramcalledSIN(SymbolicINtegrator).

SIN,in turn, weusedto write aprogramwhichsolvesfirst order_

first degreeordinarydifferential equations.Thisprogramis
calledSOLDIER(SOLutionof DifferentialEquationsRoutine).SIN

andSOLDIERarebothwritten in LISP[34], [20] for theCTSSsystem

at ProjectMAC[ii]. Theseexperimentsin symbolicintegrationare

theprincipalsubjectsof this thesis. Webelievetheseprogramsto

possesssufficientpowerandefficiencythat theycouldbeeffectively

usedin apracticalon-linealgebraicmanipulationsystem.
In orderto clarify thedomainof applicabilityof ourpro-

gramsandin orderto indicatethepowerof thepresentversions

of SINand SOLDIER,wepresentbelowtwoexamplesof problems

solvedbyeachprogram.Thesolutionsthat theseprogramsobtain

to thefourprablemscanbefoundin Chapters4 and6.

_+B2sin2xdx
n

2

j (l+2x) x dx

(2xy+5x+l)y'+y2=0

(y+x-l)y ' -y+2x+3=0

Problems solved by SIN and SOLDIER

Although the capabilities of SAINT are quite impressive,

we found compelling reasons for taking, in SIN, a substantially

different approach. The most fundamental difference between SIN

and SAINT is in the organization of the programs. SAINT utilizes

a tree search as its main organizational device. Slagle compares

the behavior of SAINT to that of freshman calculus students. We

sought an organizational model which behaved like our conception

of the behavior of an expert human integrator. This model was sup-

posed to determine the methods needed to solve a problem quite

quickly. A discussion of the approach taken in SIN is given in

Chapter 2.

SAINT utilizes a matching program for algebraic expressions

called Elinst (ELementary INSTance). We desired a program which

was more closely organized as an interpreter for a pattern matching

language. This program, called SCHATCHEN, is a service routine em-

ployed throughout SIN and SOLDIER. The power of SCHATCHEN greatly

simplified the problem of writing an algebraic simplification pro-

gram, called SCHVUOS. SCHATCHEN and SCHVUOS are described in Chap-

ter 3.

Chapter4 containsadetaileddescriptionof SINand its

methods. A comparison between methods used in SAINT and SIN is

made. It is noted that SIN contains several methods not included

in SAINT. Among these is a decision procedure for a set of inte-

gration problems. Thus SIN is able to determine that _JeX2dx and

_ dx are not integrable in closed form.

In Chapter 5 we introduce the Edge (EDucational GuEss) heur-

istic. The Edge heuristic is based on the Liouville theory of in-

tegration. In this theory it is shown that if a function is inte-

grable in closed form, then the form of the integral can be deduced

up to certain Coefficients. A program which employs the Edge heur-

istic, called Edge, uses a simple analysis to guess at the form of

the integral and then it attempts to obtain the coefficients. Edge

is a nontraditional integration method and one that we believe is

the first in a line of very powerful methods.

The methods and organization of SOLDIER are introduced in

Chapter 6. The area of nonlinear first order differential equations

is much more difficult than just integration. Thus we were hardly

surprised at not being able to find a concept analogous to the Edge

heuristic of SIN. Nonetheless the power of the current version

of SOLDIER is comparable to that of a sophomore student in an or-

dinary differential equations course.

The appendices contain results of experiments performed with

SIN and SOLDIER and a report on some other work not directly con-

cerned with these programs.

Manypeopleprobablybelievethat thecheapestwayto obtain

anintegration capability would be to design an integral table

look-up program. While we do not espouse this course of action,

we did experiment with such a program (called ITALU). Appendix A

describes this program.

Richardson has recently obtained a recursive unsolvability re-

suit in integration with has aroused great interest _2]. We des-

cribe this theorem and present some of our own related results

which involve nonlinear differential equations in Appendix B.

SAINT was asked to solve 86 problems. Of these it solved 84

in an average time of 2.4 minutes. SIN solved all 86 problems

with solution times which were frequently more than two orders of

magnitude faster than SAINT. SIN solved the other two problems

by using integration methods not available in SAINT. The fact that

SIN was compiled and that SAINT was run interpretively accounted

for most of the gain in speed. Results and further interpretations

of this experiment are given in Appendix C.

A physicist, Harold Mclntosh, used an integral table to solve

eleven fairly difficult integration problems. SIN, after some

prodding, solved these problems and found some minor errors in

Professor Mclntosh's answers. This experiment is described in Ap-

pendix D.

In order to test the effectiveness of SOLDIER we asked it to

solve 76 problems taken out of a differential equations text. SOL-

DIER solved 67 of these problems cleanly with an average time of

i0

about five seconds. One of these solutions indicated a misprint

in the solution given in the text. This experiment is described

in Appendix E.

With the exception of Chapter 7 which presents conclusions

and suggestions for further work the following chapters are fairly

self contained. Thus those who are only interested in algebraic

manipulation can reasonably ignore Chapter 2. Those interested in

AI may wish to ignore the higher numbered chapters.

CHAPTER 2

HOW SIN DIFFERS FROM SAINT

Introduction

In this chapter we discuss in broad terms the organizational dif-

ferences between SIN and SAINT. SAINT employs rather loose progress

constraints in generating subproblems, and obtains a solution through

a tree search. SIN relies on a much tighter analysis of the problem

domain (i.e., integration) and strict constraints on progress in order

to obtain a relatively straightforward solution.

Heuristic Search

In "The Search for Generality" [45], Newell finds that the most

frequent organizational structure used in Artificial Intelligence pro-

grams is one he calls heuristic searc_____._h.We shall call programs which

employ this organization as the sole or central organizational device

HS programs. SAINT is an example of an HS program. HS programs can

be considered to be programs which attempt to generate a path from a

starting node A (usually the statement of the problem to be solved,

given in the internal representation) to a terminal node B (usually the

last link necessary to find a solution to A). The path from A to B con-

sists of one or more nodes which are (again, usually) in the same problem

domain as A and B. Thus in a theorem proving program the nodes would

represent statements of possible theorems and in SAINT the nodes repre-

sent expressions to be integrated. From each node the program is able

to generate one or more successor nodes. All of these successor nodes

could be examined to determine if they lead to a solution (a "B" node),

but it is in the nature of AI problems that if this were to occur the

ii

12

programwouldconsumetoomuchtimeandspace.Hence heuristics are used

to select a set (possibly a null set) of successor nodes for examination

in preferance to others. The use of such heuristics leads to the "heuris-

tic" term in "heuristic search." The prOcess of examining nodes in the

tree which is generally produced leads to the "search" term in "heuristic

search."

There are many strategies for guiding the search of the tree. How-

ever several stand out and deserve to be mentioned. One strategy is

called "depth first." It usually selects the last node generated as the

one to be examined next. This strategy has the effect of forcing an

examination of a single path until it either leads to a solution or the

program decides that it will not yield a solution. Such a strategy is

employed in most game playing programs. At the other extreme is a stra-

tegy called "breadth first" which selects the node which was generated

earliest. Such a strategy was used in the Logic Theorist [44]. SAINT

chooses the node which represents an expression which it deems to be

one of the simplest subproblems to be integrated.

We wish to clarify the sense in which we refer to a program as an

I_ program. The fact that a subroutine in a program uses heuristic search

does not always imply that the program is an HS program. For example if

SAINT's simplifier had used heuristic search in order to simplify expres-

sions, then this fact does not imply that SAINT is an HS program (for

example SAINT could have been just a table look-up program). Nor is it

the case that any program which performs search even if the search is

guided by heuristics is always an HS program. We wish to reserve this

13

name to programs which rely on conducting a search in the same domain

in which the problem is posed. Thus programs which search for a plan

in a different space from the one in which the problem is posed and

thereafter find the solution immediately are not HS programs.

The Trend toward Generality

One of Newell's other conclusions in '_he Search for Generality"

is that _I programs have tended in the recent past to shy away from

dealing with complex problem domains such as chess, geometry, or inte_

gration, and have increasingly concerned themselves with generality.

By programs which emphasize _enerality we shall mean programs which

are concerned with an examination of mechanisms (e.g., heuristic search)

which are useful in many problem domains. By programs which emphasize

expertise we shall mean programs which concentrate on a particular

(complex) problem domain. Examples of the trend toward generality are

the advice taking programs (e.g., Black [3], Slagle's DEDUCO_[59],

and even Norton's ADEPT [47]). These programs solve toy problems

which have been posed from time to time by McCarthy. One of the striking

features of these programs is how little knowledge they require in order

to obtain a solution. In fact Persson, in his recent thesis[49] which

deals with "sequence prediction" seems to feel that placing a great

deal of context dependant information in a program would be _cheating."

This emphasis seems to be useful when one desires to study certain

Our emphasis regarding the space to be searched may differ from Newell's.

In fact our need to use intuitive definitions and rely on analogies and

examples points out the lack of a firm theoretical foundation in computa-

tion, and in Artificial Intelligence.

14

problemsolvingmechanismsin aspureamanneraspossible.

Slagle,too, desiredto useSAINTasa vehiclefor studyingcertain

problemsolvingmechanismssuchas"character-methodtables"(for example,

methodAis probablyusefulwhentheproblemis of typeI or type5--see

Minsky[41] for a discussionof this technique)and"inheritedre-
sources"(Minsky[41]). We,ontheotherhand,intendednosuch

studyof specificproblemsolvingmechanisms,butmainlydesireda

powerfulintegrationprogramwhichbehavedcloselyto ourconception
of experthumanintegrators(it shouldbenotedthat Slaglecompared
thebehaviorof SAINTto that of collegefreshmancalculusstudents).

NonethelessourexperimentwithSINmaybeusedto modifyor improve

generalproblemsolvingmechanisms.
SIN,wehope,signalsa returnto anexaminationof complexproblem

domains.Greenblatt'schessprogram[22] is anotherexampleof a

recentprogramwhichdealswitha complexproblemdomainwhichhasbeen

considerablyneglectedin the last fewyears.

The Emphasis on Analysis

Our emphasis in SIN is on the analysis of the problem domain. This

analysis is both an analysis that we performed and built into the pro-

gram, but more importantly an analysis which the program makes while

it is solving a problem. In order to achieve high performance in sym-

bolic integration we did not require that the program make a very com-

plex analysis of the situation. Nonetheless the analysis that SIN does

make markedly affects the performance of the program. When SIN is solving

one of SAINT's difficult problems the most noticeable difference between

its performance and SAINT's is not in the increased efficiency of the

15

solution,*but in howquicklySINusuallymanagesto decidewhichplan

to followandthestraightforwardmannerwithwhichit obtainsthe
solutionthereafter.

Asweshall seein Chapter4 SIN'smethodsarequitesimilarto

thoseusedbySAINT.HoweverSAINTdoesnotcommititself to aparti-

cularmethod,butwill frequentlyexploreseveralpathsto a solution

until it finds somepathwhichsucceedsin obtainingtheanswer.Heur-

istic searchis usedto find this solutionpath. Frequentlysuchun-

certaintyis necessaryin SAINTbecauseit lacksthepowerfulmachinery

that SINpossessesandrelies on(e.g., therationalfunctionpackage
of MATHLAB). Thus SAINT is forced to search until it finds a path

which leads to subproblems that it can solve. For ex_ple, in Jcot4x d_

SAINT cannot obtain a solution by using the substitution y = tan x whic|

leads to , &(l + y2) dy since it e_nnot integrate the rational function.

Thus SAINT is forced to contain a further substitution y = cot x which

SIN can easily afford to ignore. In other cases the large number of

subproblems proposed by SAINT arises when SAINT employs methods which

do not perform a sufficient analysis or possess sufficiently tight

rx 2 + x

progress constraints. For example in J_ dx, SAINT will consider

transforming the quadratic in the numerator, though this transformation

is not reasonable when one considers the square-root in the denominator

In this problem SIN would note the square-root and would make a substi-

Though SIN solves SAINT's problems about two orders of magnitude

faster than SAINT's published figures, this statistic is deceptive. If

SAINT were to be run under optimum conditions, SIN would only be about

three times as fast on the average. The principal reason for this fact

is that most of the processing time in SIN is spent in algebraic mani-

pulation (e.g., simplification), and the cost for these operations is

fairly constant in SIN and SAINT (see Appendix C).

16

tutionwhichwouldrationalizethedenominator.

Wefeel that SAINT is not the only HS program in which greater

analysis would yield improved results. In the MATER program of Simon

and Baylor [2], heuristic search is used to find a mating combination

in chess. When MATER considers the set of replies that Black might be

able to make in response to a given move of White, it stores these re-

plies in a "try list." The try list is ordered so that moves which have

fewest responses are considered first. The set of moves which have the

same number of replies are normally considered in a first-in, first-out

manner ([2], p. 435). This leads to a breadth-first search. Had

the moves been stored in a last-in, first-out manner a depth-first

search would have resulted. This search would mean that the program

would explore a path until it became worse than some other path in con-

trast to MATER's criterion that a path is abandoned when it is no better

than some other path. This slight change in the strategy of the program

would lead MATER to f_nd solutions to some problems on which it ran out

of space, and would not materially affect its performance otherwise.

This analysis of MATER is due to Henneman [26].

While we do not wish to suggest that a radically improved perfor-

mance can be had in all HS programs through greater analysis, we cer-

tainly want to emphasize the effect that such analysis can have on many

HS programs. Since any nontrivial analysis requires a good deal of

context dependent information, we also wish to emphasize the need for

such information in problem solving programs. In the long run, of

course, complex analyses and strategies will have to be represented in

17

specialized languages. We would like to see this development occur in

the Greenblatt program, for example.

The Three Sta_es of SIN

SIN is a three stage program. In this respect already the organi-

zation of SIN differs from most AI programs which are composed of a

single stage with a heuristic search as its principal organization.

The multiplicity of stages allows the programs to devote increasing effort

in later stages.

Stage i of SIN uses a method (Derivative-divides) which solves most

commonly occurring problems. The experiment in Appendix C indicates that

this method solves half the problems attempted by SAINT. Some problems

x 2 2 _-_--_.integrated by this method are: cos x, xe , tan x sec x, x

We feel that all too few AI programs employ the fact that in many

problem domains there exist methods which solve a large number of problems

quickly. SAINT did employ this idea in its IMSLN (IMmediate SoLutioN)

routine (see Chapter 4). However IMSLN is not as powerful as SIN's first

stage. Evans' ANALOGY program [17] which is one of the few AI pro-

grams which does not rely on heuristic search also could have profited

from a first stage method. EvanS' program deals with geometry analogies.

Instructions given to humans taking a test based on these analogies are

as follows: "Find the rule by which figure A has been changed to make

figure B. Apply the rule to Figure C. Select the resulting figure from

figures 1-5." Evans' program performs as if it were following the in-

structions: "Find the rule by which figure A has been changed to make

figure B. Also find rules which transform figure C to each of the fig-

ures 1-5. Select the answer figure which corresponds to a transformation

18

whichmostcloselyfits a transformationfromA to B." Thetestmakers

are essentially suggesting that one should guess the answer figure. This

scheme, we have found, is effective in almost all the problems attempted

by ANALOGY. Consider the figures A, B, C below:

BA c

A reasonable guess of the answer using the test makers' advice is:

TRIAL ANSWER

If such a figure is present among the answer figures then one should

choose that answer. All that would be required for this step is that

one test the guess for an identity with the answer figures. If this

scheme should fail to find an answer, then one would enter a second

stage in the program in which one would "debug" the previous guess or

employ an analysis similar to Evans'. Yet once one is forced to enter

a second stage, one has a piece of information that one did not previ-

ously possess--that the problem is relatively difficult. Such infor-

mation may be used to guide further processing. A further use of guessing

will be indicated below in discussing the Edge heuristic.

The second stage of SIN is the stage in which we spent most of the

programming effort. In this stage the program is able to apply eleven

highly specific methods. The principle feature of this stage is that

19

the program decides which method, if any, is applicable to a problem

quite quickly. We shall call the manner by which this stage of SIN

operates hypothesis formation. The routine at the heart of the hypo-

thesis formation mechanism in SIN is called FORM. FORM checks for

local clues in the integrand in order to generate an hypothesis regar-

ding which method is likely to be applicable. Currently FORM can

decide on the applicability of all but three of the eleven methods by

using local clues. For example, ifFORM notes the subexpression sin(x),

then FORM will call the method which handles trigonometric functions.

The first step that any of the methods in this stage is supposed to

make is to verify the hypothesis that it is able to perform a transfor-

mation which will either solve the problem or simplify it. Thus if the

routine which handles trigonometric functions does not believe that it

is applicable to the problem, as in _sin x eXdx, then it will return

the value FALSE to FORM. In that case FORM might entertain a second

hypothesis. Otherwise the method will continue to work on the problem.

More generally we think of hypothesis formation as a three step

process. First one analyzes the problem in order to obtain an hypothesis

regarding the solution method. Then the hypothesis is verified by the

method prior to attempting a solution of any subproblems. Finally, if

the method appears applicable then it is used in an attempt to solve

the problem. If the method does not appear applicable, a new hypothesis

may be generated.

We think of hypothesis formation as a model for a planning mechanism.

As with any pl_nning device one should strive to incorporate into the

planner a great deal of knowledge regarding the capabilities of the rest

20

of theprogram.Oneaspectof theunderstandingthat FORMhasof SIN's

routinesis incorporatedin its ability to "maketheproblemfit the

method."Bythis phrasewemeanthat FORMis ableto eliminatecertain

ambiguitiesin theproblem.Theseambiguitiesarisewhencertainsubex-

pressionsin thestatementof theproblemhindertherecognitionof the
truenatureof theproblem.Forexample,theanalysisthatFORMmakes

of a problemallowsit to suspectthat anexpressionis a quadraticin

x eventhoughSCHATCHEN(seeChapter3) did notmatchtheexpressionto

a quadratic.ThisoccurswhenFORMis examininga square-rootof a
rational function. Letussupposethat noneof themethodsthatFORM

hasavailablein this casedecidethat theyareapplicable.FORMwill

nowattempta furtheranalysisbecausesucha subexpressionusually

representsa blockto a solution. FORMconsiderstwoexcusesfor the

fact that themethodsdidnot seemto beapplicable.Bothrelateto

SCHATCHEN'smatchingcapabilities. Thefirst is that therational func-
tion insidethesquare-rootwasnotexpanded(e.g., x(l + x)); thesecond
that therationalfunctionwasnotcompletelyrationalized(e.g., x +!).x
FORMwill thereforedetermineif thesetwotransformationsareapplicable

to therationalfunction. If theyare, it will reanalyzetheproblemto
determineif its methodsareapplicable.ThusFORM'sanalysisenables

it to localizethedifficulties in aproblem,andits understandingof
therest of SINallowsit to find excusesfor certaineventsandhelps

it to overcomethedifficulties in a problem.In someof thecasesjust
consideredSAINTwouldhaveperformedthesametransformation(onlyexpan-

sion, though).Yetthesetransformationswouldbeappliedto thewhole

integrandandnot to selectedportionsof it.

21

Thethird stageof SINis theplacethat wereservedfor general
methodsof integration. Suchmethodseither searcha greatdealor

involvemuchanalysisandmachinery.Hencewefeel that theyshould

beconsideredasa last resort. Theexperimentdescribedin AppendixC

indicatesthat onlytwoproblemsrequiredamethodin this stage. The

mostinterestingmethodof stage3 is Edgewhichis basedontheEdge

heuristicandis discussedin Chapter5. Edgeis a novelintegration

methodsinceit guessesthegeneralformof the integral. Oncea guess
hasbeenmade,a "differencing"techniquesimilarto GPS's[43] is

appliedto obtaintheanswer.Aswill beseenin Chapter5 theguess
is closelyrelatedto theantiderivativeof a selectedsubexpressionin
the integrand.

CHAPTER3

SCHATCHEN- AMATCHINGPROGRAMFORALGEBRAIC

EXPRESSIONS

Introduction

Our aim in this chapter is to develop a set of requirements

for a language in which one can describe concisely and precisely

algorithms for the manipulation of algebraic expressions. Several

attempts at such languages have been made in the past. We would

like to distinguish among these attempts two distinct approaches to

an algebraic manipulation language. One could be called the

command-oriented language. An example of a command would be "Let

w be the name of the expression which results from substituting the

expression named x for that named y in expression named z." It is

customary to abbreviate this to something like "w = subst(x, y, z)."

The second approach can be called the pattern-directed (or

production) approach. An example of a statement in such a language

would be "x+x - 2*x," which means that if the expression currently

being examined matches (i.e., is of the form) x+x, then it is re-

placed by the expression 2*x. Such statements will be henceforth

called rules. A rule is composed of two parts, a pattern-match part

(antecedent) and a replacement part (consequent).

22

23

A command-orientedlanguageis desirablefor man-machine

interactionbecausethehumanis ableto performthedesiredpattern

recognitionbyhimselfmostof thetime(seeMartin[_], Engel-

man[15]). It is alsousefulin thosesituationsin whichthe

algorithmsbeingcodedarestraight-forward,that is, nothing

unusualis likely to happen.Anexampleof sucha situationis a

programwhichsolvesa systemof linearequationswithvariable
coefficients(seeALPAK[6])-

Whenthealgorithmsbeingcodedbecomeincreasinglycomplex,

thepatternrecognitionrequirementsof thealgebraicmanipulation

languageare increased.Tomeettheserequirements,highlycommand-

orientedlanguages,suchasFORMAC[5], includesomepatternrecog-

nition facilities (e.g., thePARTcommand).However,thesefacilities

arewoefullyinadequatefor manypurposes(e.g., simplification,in-

tegration)andtheneedfor a pattern-directedsubsetof anal-

gebraicmanipulationlanguagehasbecomeclearlyestablished.

In this chapterweshall beconcernedsolelywiththepattern-

directedapproach.At first, weshall rely principallyonthe

reader'sintuitionandunderstandingof algebraicexpressions.Our

discussionwill becomemoreandmorepreciseasweproceed.

Weshall first examinetherequirementsof thepattern-

match.Therequirementsof thereplacementpart, whicharesimpler,

areexaminedlater. Anapplicationto simplificationof theSCHATCHEN

programwhichfulfills theserequirementswill thenbediscussed.The

24

chapterendswithanessayonsimplification.

Below"PLUS","TIMES"will designatetheusualarithmetic

operationsof additionandmultiplication. Theformerwill alsobe

designatedby"+", andthelatter byconcatenation."EXPT"will

representexponentiation.

The Pattern-Match

Let us consider the intuitive pattern for a quadratic in x --

namely, pattern PI:

(PI) Ax 2 + Bx + C

All would grant that the expression E1 satisfies the pattern

PI with the values for

(El) 3x 2 + 2x + 5

A, B, C, being 3, 2, 5, respectively. Such an expression also

appears to offer no difficulties to a matching program since there

is a I - I correspondence between the elements in the expression and

the elements in the pattern. Thus, a straight-forward left-to-right

scan should yield the corresponding values for A, B, C and result in

a match. Consider, however, the expression E2. E2 is also a

quadratic in x. Yet it fails to have one of the properties that E1

enjoyed. A left-to-right scan of E2 will yield the

(E2) 3x 2 + 2x

value 3 for A and 2 for B. However, we will have difficulty in

25

assigningavalueto Csincenotermin theexpressioncorresponds

to theCtermin thepattern. ObviouslyCshouldbematchedwithO.

Wegeneralizetheexampleto concludethatterms in a sum in the

pattern which are missing in the expression are to be matched with 0.

Likewise, factors in a product in the pattern which are missing in

the expression are to be matched with i. We should note though

that extra arguments in the expression might lead to failure as in

expression E3:

(E3) 4x 3 + 3x 2 + 2x + 5

Expression E4 presents us with a degenerate instance of

pattern PI. Note that the operators PLUS and TIMES which are ex-

plicitly present in P1

2
(E4) x

are missing in E4. We can introduce these operators by rewriting

E4 as E4'.

(E4') l.x 2 + 0

Let us proceed now with matching PI and E4'. The value i for A is

easily obtained. The 0 term in E4' will match Bx and will result in

B=0. (This process will be clarified below.) Finally, due to the

requirement stated above regarding missing terms in a sum, C will

be matched with 0. Then in order to match PI with E3 we required that

the match must recognize missing or implicit operators.

26

Let us consider how the match might determine that Bx=0

implies that B=0. In PI we implicitly introduced the convention that

constants such as x are represented by lower case Roman letters and

variables such as A, B, C, are represented by upper case Roman letters.

Constants must match themselves. The values of variables are deter-

mined by the pattern-match and depend on the expression. Furthermore,

our knowledge of multiplication indicates that if a product in-

volves a 0 factor, then its value is O. (We shal_ ignore cases with

infinite factors.) Thus, if a product is matched with 0_ it is re-

quired for a factor to match 0. If Bx is matched with 0, then since

x must match itself, B must match 0, otherwise the match fails. A

complementary requirement we shall impose is that if a product is

matched with I_ then each factor must match i. This requirement is

redundant since it follows from our requirement for missing arguments

in a product.

In the above we have built into the match an understanding of

the arithmetic laws involving 0 and 1 in sums and products. Note

though that the match assumes that the expression has been simplified

to some extent. Thus, the pattern Ax 2 will not match the expression

4(1/2) is assumed to match onlyx since the constant expression x 2

itself.

However, information about 0-i laws are insufficient as can be

seen when we consider expression E5:

(ES) x

27

In some cases such an expression could pass for a quadratic. In

other cases (for example, in applying the quadratic formula) such

an expression is not admissible as a quadratic. Note that the

match as described above will result in the value 0 for A, i for B,

and 0 for C for expression E5. We need to be able to describe to

the match that the value 0 for A is proscribed. In fact, we would

like a more general facility allowing one to delimit the range of

values that the variables in the match may have. We shall require

that the variable must be allowed to satisf¥ a predicate. We

shall indicate such a facility with a slash (/) as in pattern P2.

In P2 we require A to satisfy the predicate NONZERO:

(P2) A/NONZERO x 2 + Bx + C

In examining expression E6 we see that we will need more

predicates to limit the values of A, B, C, since E6 is certainly

not a quadratic in x:

2
(E_) X + sin(x) x + 1

Let us consider pattern P3 which takes care of the difficulty

in E6.

(P3) A/NONZERO-AND-NUMBER x2+B/NuMBER x+C/NuMBER

Pattern P3, however, may be a too restrictive condition. It requires

28

that A, B,C,benumbers.

Forexample,P3will rejectexpressionsE7andE8

2(E7) x + _x
2(E8) x + x + y

slncex doesnotappearlike a number and since y is certainly

not a number. If we wish to accept both E7 and E8, pattern P4

might be suitable:

(P4) A/NONZERO-AND-FREEOFX x2+B/FREEOFX x+C/FREEOFX

We shall assume that the predicate FREEOFX determines whether

an expression contains an occurrence of x and has the value T (true)

if it does not contain such an occurrence.

We thus can see that the predicate facility is both a blessing

and a headache since it forces one to consider quite carefully what

it is that he desires to be matched.

Further complications arise when we consider the expression E9.

We recognize E9 to be a quadratic.

2

(E9) x + x

However, in doing so we made use of the fact that addition was a

commutative operation. This leads us to require that the match must

take into account the cemmutativit_ of addition and multiplication.

(Non-commutative addition and multiplication could he represented

with different operators than PLUS and TIMES.) As it turns out this

29

requirementincreasesthecostof thematchgreatly. It is now

insufficientto performa singleleft-to-right scanof theexpression.
Wemaybeforcedto traversetheexpressionseveraltimes. Weshall

assume,however,that thepattern is to be scanned once from left-to-

right. This will allow us to use the values of previously bound

variables. For example, a pattern for determining whether an ex-

pression is a perfect square might be written as P5

(P 5) A x 2 +B
/NONEERO-AND-FREEOFX /FREEOFX x+C/FREEOFX -

AND - (B2-4AC = 0)

since by the time we encounter C, the values for A and B should

already be known or else the match has already failed.

The predicate facility is one way in which the pattern can be

used to direct the match. Below we shall give descriptions of

other facilities and examples in which they might be used. These

facilities are made available by the use of modes for the variables

in the match. The desirability of the first of these modes is indi-

cated in expression EIO.

(EIO) 3x2y + 2x + I

The difficulty in matching expression El0 is due to the

occurrence of more than one factor (other than x 2) in the terms in-

2
volving x . We would really be interested in having the variables A

and B act as coefficients of x 2 and x, respectively. This means that

30

2
in theterminvolvingx , theproductof all theotherfactorsis a

candidate for A. To show this we shall use the indicator COEFFT

(coefficient in TIMES) as a modifier for A as is shown in P6:

(P6) A /COEFFT ,NONZERO_AND.FREEOF X x2 +B/coEFFT , FREEoFx X

+C/COEFFP, FREEOFX

In P6 we used the indicator COEFFP (coefficient in PLUS) to modify C.

This means that C will match the sum of the remaining terms in the

expressions. The result of matching P6 with El0 is : A=3y, B=2, C=I.

In expression Ell we see another phenomenon which will necessi-

tate the addition of a new mode. In Ell

(Ell) 2x 2 +_x 2 + 3

2
there occur two terms involving x . If we assume that each term in

the pattern should match exactly one term in the expression, then

the single term Ax 2 in the pattern will fail to account for the two

terms in El0. We need a facil.ity for specifyin_ to the match that

a particular variable in the pattern is to be considered a co-

efficient in both a product and a sum. This is done in pattern P7

by using the indicator COEFFPT (coefficient in PLUS and TIMES) to

modify A and B.

(P7) A/COEFFPT ,NONZERO-AND- FREEOFX x2+B/coEFFPT, FREEOFX x+C/coEFFP, FREE

with the machinery we have developed we can now match pattern P7 with

31

the expression El2:

(El2) y3 + 3_x2y + 6x2 + 5y + i

The result of this match should be A=3_y + 6, B=0, C=y 3 +5y +I.

In the above examples we were attempting to determine whether

the expression was a quadratic in x. Suppose we wanted to generalize

the problem in order to determine whether the expression was a

quadratic in some atom, but where the atom was not fixed, but may

itself change. More precisely, we desire a function QUADRATIC of

two arguments EXP and ARG. This function is expected to determine

whether EXP was a quadratic in ARG. P8 can be used as a pattern in

qUADRATIC.

(PS) A/COEFFPT,NONZERO_AND_FREEOFAR G (VAR/EQUALARG) 2 +

B/COEFFPT,FREEOFARG (VAR/EQUALARG) +

C/COEFFP, FREEOFARG

In P8 we introduced the predicate FREEOFARG which has the

obvious related function to FREEOFX in pattern PT. The predicate

EQUALARG tests the value that the match assigned to VAR for equality

to ARG.

Let us now congider the problem of extracting a perfect square

from a sum. More precisely let us consider the situation in which a

sum has three terms which are individually of the form A*VAR 2, B*VAR

and C, and whose relation is defined by B2-4AC=0. This differs from

32

the situation described in pattern P5 in that the expression may

now have more than three terms and in that the value of VAR is

originally unknown and depends on the expression being matched. Our

first attempt is to describe this situation with P9:

(P9) A/NONZERO_AND_NUMBE R VAR2+B/NuMBE R VAR+C/NuMBER_AND_ (B2_4AC.O)

+D/cozFFp

It turns out that pattern P9 does not satisfy our requirements

because there is some ambiguity regarding VAR. In predicate PS,

VAR was determined uniquely by the predicate EQUALARG. In the

current situation no such a priori predicate exists. The first

value of VAR can be essentially anything. To indicate this we can

write VAR/TRUE instead of VAR, where TRUE is a predicate which is

true on any input. However, the second occurrence of VAR in the

pattern (i.e., in B/NIPAIBER VAR) is intended to be fixed. That

occurrence of VAR must be the same as the previous value attached

to VAR. To make this point clear, let us consider expression El3 :

(El3) y2 +2x + i + 5z + 2y

This expression will match pattern P9 with A=I, B-2, czl, D_5z+2y,

and with the first value of VAR equal to y and the second equal to x.

To avoid this situation we could write the second occurrence of VAR

as VARI/EQUALVAR. This is a fairly clumsy mechanism (even though a

similar device was used in P8). What we shall do instead is to

33

define a new mode called CONV in which the first occurrence of the

variable _e._._ VAR) will satisfy the predicate _e.8. a TRUE) and

the latter occurrences must match the expression matched durin_ the

first occurrence. We thus arrive at pattern PI0. (The CONV mode is

directly related to the PAV (pattern variable) mode of CONVER_ [23].)

(PI0) A/NONZERO_AND_NUMBER (VAR/coNV,TRUE) 2 + B/NUMBE R VAR +

C/NUMBER-AND- (B 2-4AC=0) +D/coEFFP

Pattern PI0 will match El3 with A=I, B=2, C=I, D=2x+Sz, and VAR=y.

Let us consider PIO with expression El4:

(El4) Y + y2 + x 2 + 2x + i

The first attempt will be to match VAR with y. This attempt will

fail and the match will fail even though a perfect square exists if

VAR were to match x. What is required here is a facility for direct-

ing the match to search for further possibilities. It is assumed,

of course, that the user of such a facility is aware that it may

cause a profound increase in the cost of a match. We shall intro-

duce such a facility with a mode which indicates a loop over the

expression. Such a facility may be used when there exists a set of

variables (such as A, B, C) in pattern PI0 which are mutually inter-

related (e.g., B2-4AC=O). This facility will direct the match to con-

tinue making trial guesses for the variables until one set is found

which is satisfied or until all possibilities have been exhausted.

34

In programmingtermsthe loopfacility in theproblemof patternPI0

will askfor a 3-1evelloopin whichall possiblevaluesfor A, B,C

(notethat VARis determinedalongwithA) areexamineduntil oneset
is foundwhichsatisfiesB2-4AC=O.Thesyntaxfor the loopfacility

is givenin patternPII:

(Pll) A/LOOP(A,B,C) ,NONZERO-AND-NUMBER (VAR/coNV,TRUE) 2 +

B/NUMBER VAR+C/NuMBER-AND- (B 2-4AC=0) +D/coEFFP

Although in the above we have concentrated entirely on

describing patterns for quadratics, our intention has been to

describe a set of requirements for a language which can handle a

far richer set of tasks. To indicate the power of the machinery we

have developed, we shall give below a pattern which tests for the

occurrence of sin2B + cos2B in a sum. Pattern PI2 will match ex-

pression El5 and results A=5cos2(y) + i, B=2x, C=2, and D=3y+2sin2(x).

(PI2) A/COEFFPT,LOOP(A,C), NONZBRO sin2
(B/coNV,TRUE) +

C/COEFFPT,NONZERO c°s2(B) + D/COEFF P

(El5) 3y + 2sin2(x) + 5sin2(2x)cos2(y) + 2cos2(2x) + sin2(2x)

The implicit relationship between A and C in pattern PI2

appears fairly trivial -- that is, both A and C must be nonzero.

35

However, expression El5 shows that the loop facility helps to get us

out of the trap of matching B to x in the 2sin2(x) term.

We have so far neglected a discussion of the matching require-

ments of patterns which include exponentiation. We have let in-

tuition guide us through the cases where exponentiation did occur

in the patterns above. As before a constant expression in the pattern

of the form A B (e.g., sin2(x)) must match itself. Otherwise, if A B

is to be matched against the expression O, we shall assume that it is

necessary and sufficient for A to match O. (The difficulty that

arises if B likewise were to match 0 is ignored.)

If A B is matched against i, then either B must match 0 or A

must match i. Note that this can lead to a difficulty if both A and

B are variables, since only one value will be determined. If A B is

E2

matched against E 1 , then B must match E 2 and A must match E 1 or

E2
B must match I and A must match E 1

In pattern PI3 we are testing for an expression of the form

sinn(x) cosm(x). This pattern will match the expression sin(x)

and result in the values N=I, M--O.

(P 13) s_n" N/INTEGER (x) cos M/INTEGER(x)

Pattern PI4 is included here to indicate some of the ambiguity that

is inherent in patterns.

M/INTEGER

(PI4) [A/NoNZERO_AND_FREEOF X xN/INTEGER + B/FREEOFX)

36

PI4correspondsto theintuitive pattern(axn+b)m. WhenPI4is
matchedagainst(x2+l)3 it will yieldA=I,B=I,N=2,M=3.Whenit

is matchedagainstx6 it will yieldA=I,B=O,N=I,M=6,although

A=I,B=O,N=2,M=3servesequallywellasa setof solutions.We

usedthis patternto indicatesomeof thelimitationsof thematch-

ingprogramwehavebeendefining. In thecaseof theexpression
6x , weobtainvia patternPI4theimplicit relationNM=6.This

meansthatwehavegiventheprograminsufficientinformationre-

gardingthechoiceof valuesfor NandMin this case. Thematch

cannotbeexpectedto doverywell in this instance.

Aseconddifficulty withpatternPI4 whichhasalreadybeen
mentionedoccurswhenit is matchedagainstI. In this caseour

requirementsfor thematchindicatethatall thatshall result is
M=0.WecouldhaveobtainedA=O,B=Iif therequirementsregarding

thematchingof i hadbeenreversed.Neithersituationis wholly

satisfactory. However,it is hardto foreseea compromisesolution

whichwill bewhollysatisfactory.

Thelessonthat is learnedfrompatternPI4is that it is up

to thehserto makehis patternssufficiently restrictivesoasnot

to yield ambiguoussituationsin thosecasesin whichtheyare likely

to beapplied.

Theimpressionthat is likely to bein themindsof some
readersis thatmoremachineryis yet to bedescribed.Wedonot in-

tendto dothis. In somestrongsensethedesignof a goodalgebraic

37

manipulationlanguageis neverover. Anydescriptionis onlyan
imperfectsolutionto manyconflictingrequirements.Whatmakesa

languageinterestingis its usefulnessin solvingproblems.The

setof requirementsdescribedaboveshouldsatisfy thiscriterion
for manyproblems.

Beforeweendourdiscussionof thematchandturnouratten-

tion to thereplacementpart of therule, thereareafewremarks
whichare in order.

Thematchthatwehavedescribedis basedontheformof the

expression.Frequently,wedesireto knowinformationregardingthe

formto whichtheexpressioncouldbereducedunderlegalalgebraic

transformations.Whenweask "Is this expression a quadratic in x?"

we usually mean "Is this expression equivalent to a quadratic in x?"

rather than "Does it look like Ax2+Bx+C? ''. Thus expressions El6 and

El7 are quadratics in x which do not look like quadratics in x unless

we stretch our imagination a good deal. By restricting ourselves to

a match based on form we can hardly expect this match to determine

that El6 and El7 are quadratics.

(El6) x 2 + sin 2(x) + cos 2(x)

(El7) (x+l) (x+2)

The generality of the match means that its power is restricted. One

could, of course, design a special-purpose test for a quadratic in x.

It might check to see if the third derivative of the expression with

38

respectto x is equivalentto 0andif thesecondderivativeis

different from0. TheoreticalresultsbyRichardson(seeAppendixB)

indicatethat therewill beproblemsevenwithsucha specialpurpose

matchwhichit couldnotdeterminecorrectlyin finite time. Special

purposedevicesprobablycouldbedesignedfor eachpatternthat

couldbewrittenfor ourmatch.Someof thesewouldhaveto bequite

ingeniousin orderto bemorepowerfulthanourmatch.Thesede-

vicesmightbenecessaryin certainsituations. However,theyrun

counterto ourdesirefor a languagein whichonecanwriteconcise
rules.

Weshallhavemoreto sayaboutthepatternmatchwhenwedis-
cusstheexistingalgebraicmanipulationlanguagesbelow.

Replacement

Having discussed the matching part, we shall now describe the

process by which new expressions may be generated using the results

part of theof the match. This process we shall call the replacement

rule.

(R i)

in a dictionary containing the values of A, B and C.

Let us consider the intuitive statement of rule RI._

B
Ax 2 + Bx + C -_ Ay 2 + C 4A

A successful match of the left-hand-side of RI should result

This dictionary

39

is thenusedto generatetheright-hand-sideexpressionsbyre-

placingthevariablenamesbythevalueswhichwereassignedto them
duringthematch.If weconsidertheexpressionx2+2x+l,thematch

shouldresult in A=I, B=2,C=Iandtherule shouldyield theex-
22

pressionly2+l-_ . Sincethis expressionis unsightlyweshall

require that the replacement step should simplify the expression.

Thus, RI would result in the expression y2. (Note that R1 performs

the operation of completing a square.)

Suppose we were given rule R2:

n n n-2 2 n n-4 4

(R2) cos(nx)-_cos (x)-(2)cos (x)sin (x)+(4)cos (x)sin (x)

R2 computes the first 3 terms in the expansion of cos(nx) in terms

of cosx and sinx. If we had matched the expression cos(4x) with

rule RI, we would result in an expression involving the combina-

torial terms () and (4 " In order to have an expression amenable

computation ($) and (_) should be evaluated to yield 6
to further

and I, respectively. Thus, we require a facility for evaluatin$

selected portions of the expression. With this facility R2 can be

written as R3.

n (n-2 (x)+EVAL ((4))(R3) cos(nx)- cosn(x)-gVAL((2))cos)(x)sin 2

cos (n-4)sin 4 (x)

40

Thereplacementroutinewill substitutefor eachatomwhich

appearsin theright-hand-side_its valuein thedictionaryif there
is suchavalue. If nosuchvalueexists, theatomwill bereplaced

byitself, that is, it will bequoted.We will require a supple-

mentary quotin_ mechanism so that we may use right-hand-sides in

which names of variables appear which are not replaced. An example

of a rule using such a facility is R4. DIFF(A,B) is assumed to

yield the formal derivative of A with respect to B.

g(Y) g(Y)

(R4) f(x) _ f(x) EVAL (DIFF(g(y),(QUOTE x)))

Although for expository purposes we used only intuitively written

pattern matches in the rules above, it should be clear that in

practical situations the left-hand-sides of the rules would be re-

placed by more explicit matching forms.

41

Existin K pattern-directed languages

The requirements given above for a matching and a replacement

program are satisfied by the SCHATCHEN* and REPLACE routines used

in SIN. We would like to place these programs in their historical

context. SCHATCHEN has been most influenced by ELINST (ELementary

INSTance), a set of routines included in Slagle's SAINT for the

purpose of matching algebraic expressions to forms. ELINST

satisfies many of the algebraic properties of SCHATCHEN such as

variable arguments to PLUS and TIMES, missing operators, and

commutative operators. It differs in that it does not give the

user explicit control mechanisms of the scan of the expression.

ELINST will generate all possible sets of values for the

variable and only then will it apply the side relations to

determine those which satisfy the pattern. Besides this weakness,

ELINST suffers most.by being essentially undescribed. I suspect

that had Slagle described ELINST in 1961, then some of the

proposals for algebraic manipulation languages which were made

since 1961 would have had a different character. ELINST had to

be as general as it is because the problem that Slagle was trying

to solve required such generality. Furthermore Slagle encountered

grave problems in fitting his program into the memory (32K) of the

7094 and thus chose to make use of the economy of calls to ELINST

in many situations in which it would otherwise have been wiser to

write special purpose matches. Thus he claimed that one half of

the time that was spent usefully by SAINT (i.e., excluding

*match-maker in Yiddish

42

garbage collections) was spent in pattern recognition.

The features of the algebra-oriented pattern-directed

languages that were introduced in the past six years (e.g.,

AMBIT _ Fenichel's FAMOUS [19], FORMULA ALGOL _8], , PANON-

[81)*IB appear to have a great deal in common. PLUS and TIMES are

restricted to at most two arguments. Operators that appear in

the pattern must explicitly appear in the expression. Sometimes

also PLUS and TIMES are not recognized as commutative operators.

All these restrictions mean that the patterns ar_ highly specific

and that several rules are necessary in order to accomplish a task

that can intuitively be stated in a single rule. The advantage that

such matching routines have over a more general one such as SCHATCHEN

is that each of the rules is quite readable and relatively efficient

to execute. However the effect of a set of rules which is equivalent

to a single SCHATCHEN rule is probably harder to guage than the

SCHATCHEN rule itself. The execution time of a set of rules is also

probably longer than the execution time of a single SCHATCHEN rule.

Here is the kind of rule set that would be required in such

languages in order to recognize a quadratic in x:

(RS)

2 2
x ax

2 2
x + bx ax + bx

2 2
x +x ax +x

2 2
x + bx + c ax + bx + c

2 2
x + x + c ax + bx + c

2 2
x +c ax +c

43

*It should be noted that these languages have a greater generality

than a discussion of their usefulness in matching algebraic

expressions would indicate.

In proposing the above twelve rules we are assuming that the

language provides for commutativity in PLUS and TIMES and for the

ability for declaring a, b, c to be FREEOFX. In systems in which

a minus sign is recognized as a distinct operator one might require

even more rules. Unfortunately the rule set proposed is not as

powerful as Pattern P7 because each term in the pattern will be

matched with exactly one term in the expression. It appears that

one could overcome this restriction only by a recursive or iterative

application of the rules. In fact, the FAMOUS system relies on the

fact that the rule set is applied repeatedly to a given expression

although in FAMOUS' case the reason for this reliance has a deeper

philosophical significance owing to Fenichel's strong affirmation

of the concept of local transformation embodied in M-theory.

In our previous discussion we have emphasized the desirability

of the implicit arithmetic operators PLUS, TIMES and EXPT in the

pattern. There are, however, instances where the operator must

explicitly be present. In the rule below which is used for

rationalizing sums in a recent thesis by Iturriags [28],

(R5) A+B/c 4
C

the "+" operator must be present as well as the "/" operator. It

is possible to simulate the requirement that these operators must

44

bepresentbyrequiringthat Acannotbe0andthatCcannotmatch
i. Howeversucha situationis clumsyat best,anda facility fo!

explicit operators should be provided. With such a facility for

explicit operators (present in the early versions of SCHATCHEN,

but dropped because of lack of use),a user of the algebraic mani-

pulation system will be capable of programming in a wide variety

of styles. These will range from the fairly rigid and inflexible

rules of the rule set RS to the type of rule exemplified by pattern

PII.

We shall also mention a slight controversy regarding the number

of arithmetic operators which should be present in the internal

structure of an algebraic manipulation system. Some people appear

to believe that a large number of operators including unary minus,

quotient, and difference is a good idea. Experience has shown,

however, that such systems, expecially when combined with an

inflexible pattern-match, require an increase in the user's awareness*

which tends to downgrade his problem solving ability. The less a

user must be concerned with what is actually happening, the more

likely he is to solve hard problems. Of course, if the details

which are hidden in the system involve exponential growth or the

like, hiding such details can be disastrous. This is not, however,

*"Awareness" is a term used by Weizenbaum to indicate the degree

of attention to detail which a user is required to maintain in

a given situation.

45

the situation when arithmetic operators are translated internally

into only three - PLUS, TIMES, and EXPT. At the input-output level,

just the opposite effect takes place. Here we wish to let the user

of the algebraic manipulation system have the flexibility with

which he feels comfortable. The recent trend in input-output

of algebraic expressions has been to have this flexibility

(see Martin [3_).

46

Implementation of SCP_ATCHEN

SCHATCHEN is currently implemented as a set of LISP programs.

Several people have suggested that one should embed it in a more

general language. CONVERT [23] seems to be the regnant choice for

such a language. CONVEEr is a general pattern directed language with

much machinery for the transformation of lis_ structures. In fact,

two modes in CONVERT which were introduced in the past year (i.e.,

BUV - bucket variable - and UNO - unordered search) were introduced

by Guzman and Mclntosh, the designers of CONVERT, with the intention

of such embedding. Interestingly enough, the BUV mode is sufficiently

general that it has replaced other CONVERT modes. The advantage of

such an embedding is that it would allow the user to employ other

facilities of CONVERT. These facilities are quite impressive. The

major disadvantages are due to inefficiencies in a straight-forward

implementation. In order to discuss these inefficiencies we will have

to describe the manner in which SCHATCHEN performs a scan.

Suppose we have a pattern of form I,

(I) PI + P2 + P3

and an expression of form II.

(II) E1 + E2 + E3 + E4

The scan proceeds by attempting to match PI with El. If that fails

an attempt will be made with PI and E2, then PI with E3. If PI

47

matches E3, then E3 will be deleted from II, and the scan proceeds

by matching P2 + P3 with E1 + E2 + E4. This deletion is done by

using the RPLACD subroutine of LISP. In general this is an unsafe

method. It means that any prior references to _ will refer to the

expression with E3 deleted, which can be disastrous. However, great

care is used inside SCHATCHEN to maintain pointers to the excised

expression and to restore it to its original shape once the match

has been performed. Furthermore, all the pointers that a pattern

can have to intermediate results are carefully copied. The alter-

native to the deletion approach is to completely reproduce expression

II without E3. The alternative is quite costly especially when the

number of failures in identification is taken into account. Suppose

patterns PI and P2 are related via a loop, then P1 may have to be

rematched after an original successful match. More likely is the

case that P1 is matched with E3, but P2 finds no match at all and

thus the match fails. The method of reproducing_an expression en-

tirely following a match of a subpattern with a subexpression is

thus seen to be quite expensive. A normal string transformation

language or even a list transformation language such as CONVERT

(except for the UNO mode) does not face this difficulty because the

scan along both the expression and the pattern is left-to-right. Thus,

if PI matches E3, P2 can only match subexpressions to the right of E3,

(i.e., E4). When one introduces commutativity into the picture, the

situation becomes more complicated. Thus, in our example, after PI

48

matchesE3,wemuststart P2withEl, P2withE2,P2withE4.It

is thecomlutativityrequirementwhichnecessitatestherescanof

theexpression.
Analternativeto theSCHATCHENscanis to scanleft-to-right

alongthepatternwitheachsubexpression.Thus,if E1doesnot

matchPI, thenamatchis attemptedbetweenE1andP2. Withthis

scanoneis forcedto keepintermediateresultsandperformcomplex
processingat theendof thescanin orderto determinewhetherthe

variablesof thematchsatisfy their predicatesandareproperly

related. Thisalternativewasrejectedasbeingtoounwieldy.

Anotheraspectof the implementationof SCHATCHENturnsout

to haveimportantsemanticproperties. Intermediateresultsin
SCHATCHENarestoredin a speciallist calledANS.Onthis list we
alsofind theexcisioninformationmentionedaboveaswellasmarkers

usedto indicatelevelsof scopeof variablebindings.A successful

techniquein usingSCHATCHENis to usepredicateswhichare them-

selvescalls to SCHATCHENandwhichintroducenewvariablebindings

to theANSlist. Thus,a variableAmayberequiredto beof the
formBC,whereBandCmustmatchcertainpatterns. Bycalling

SCHATCHENdirectl_asthepredicatefor A, thenthevaluesof Band
Cwouldbelost. However,if onecalls a routineexactlyonelevel

belowSCHATCHEN(namelyMI), thenonecanpreservethevaluesof B

andCin thefinal result aswellasobtainthefull powerof SCP_TCHEN

49

Thefact thatANSis availablefor all to useduringthematchcanbe

dangeroussincethepredicatescouldaccidentallydestroya great

dealof information.Nonethelesstheadvantageof suchanimplemen-
tationdevicefar overridesthis difficulty. TheANSmechanism

representsanotherdifferencebetweenCONVERTandSCHATCHEN. CONVERT

does not allow direct access to its dictionary. Many of the modes in

CONVERT, however, perform some change to this dictionary. In

this regard it should be noted that FLIP [62], another pattern-

directed language which is similar to CONVERT in emphasizing the

transformation of lists, concentrates on the control of the scan by

the user. FLIP, however, lacks much of the recursive machinery of

CONVERT and thus appears to be less likely a candidate for a language

in which to embed SCHATCHEN.

A Partial Description of SCHATCHEN

$CHATCHEN has two arguments, an expression and a pattern.

These will be denoted e and p, respectively. Variables in the

pattern are written in the form (VAR name pred argl ... argn)

where

name = name of variable

pred = predicate associated with the variable

argi are arguments 2 through (n+l) of pred.

The first argument of pred is assumed to be the expression that the

match assigns to the variable.

50

If a variablehasamode,themodeis writtenin prefix form.

Thus,A/COEFFPT,NUMBERXbecomes(COEFFPT(VARANUMBER)x), and

A/COEFFP,EQUAL5 becomes(COEFFP(VARAEQUAL5)). (Thispattern

testsfor theequalityof thevariableAwith5.)

51

SCHATCHEN(e p)

If e equals p, the match succeeds.

If p is of the form (VAR name pred argl, ..., argn),

then pred (e argl arg2, ..., argn) is evaluated.

(Note that argl, ..., argn are replaced using ANS,

SCHATCHEN's internal push down list. If they contain

names of variables on ANS the most recent corresponding

values are used. Otherwise, EVAL (the LISP interpreter)

will obtain the value of the variables). If the value of

pced is TRUE, the match succeeds and ((name • e)) is

appended to ANS. Otherwise the match fails.

If p is of the form (op pl .,. pn) and op is not PLUS,

TIMES or EXPT, then e must be of the form (op' el ... en)

and each pi must match ei and op must match op'. Other-

wise the match fails.

If _he pattern is of the form (EXPT pl p2), then i) e is

(EXPT el e2) and pl matches el and p2 matches e2

or 2) e is 0 and pl matches 0

or 3) e is 1 and a) p2 matches 0 or b) pl matches I

or 4) p2 matches I and pl matches e

Otherwise the match fails.

52

If thepatternis of theform(oppl p2, ... pn)and

op=PLUSor TIMES,thenif e is notof theform

(opel, ..., em),e is transformedto (ope). In this

caseanattemptis madeto matcheachpi withsomeej. The

scanstartswithpl matchedwithel. If that fails pl is

matchedwithe2. If pi matchessomeej, ej is deleted

(usingRPLACD)frome andthescancontinueswithpi+l

matchedwith thefirst subexpressionremainingin e. If
for somepi noej canbefoundto matchit, thenpi is

matchedwith0 if op=PLUSof 1 if op=TIMES.If that

alsofails, thematchfails. If all thepi havebeen

matched,butsomeej havenot, thematchlikewisefails.
Exceptionsto thetreatmentabovearedueto modes.If op=PLUS,

andpi is of theform(COEFFPT(VARnamepredargl, ..., argn)pl,...,

pk), thentheremainingexpressionis traversedwith thepattern

(COEFFT(VARnamepredargl, ..., argn)pl,..., pk). Eachsub-

expressionthat is thusmatchedis deletedfromtheexpression.The

simplifiedsumof theresultsof thescanbecomesthevalueof the

variableandis appendedto ANS.If nosubexpressioncouldthusbe

matched,thenpred(0,argl, ..., argn)is attempted.If this toofails,
thematchfails.

If op= PLUSandpnis of theform(COEFFP(VARnamepredargl,...,argn))

thenif e is currentlyof theform(PLUSei, ..., en), thenpred
(eargl, ..., argn)is evaluated.If thevalueof predis true

53

((name.e)) is appended to ANS. If no subexpressions remain in e

then pred (0 argl, ..., argn) is attempted. If it succeeds,

((name. 0)) is appended to ANS. Else the match fails.

If op = PLUS and pi is of the form

(COEFFT (VAR name pred argl, ..., argn)pl, ..., pk), then

(TIMES p l, ..., pk) is matched with e. If the match succeeds and

e remains of the form (TIMES el, ..., en) then pred (e arg%...,argn)

is attempted. If it fails, the match fails. If no subexpressions

remained in e, then pred(l argl, ..., argn) is attempted. If this

succeeds ((name. i) is appended to ANS. Else the match fails.

All other matches fail.

54

An Application of SCHATCHEN

SCHVUOS - SCHATCHEN'S VERSION OF AN UNASSUMING

O__PERAT IONAL SIMPLIFIER

Owing to space considerations of the 7094, SIN required a

small but powerful simplification program. Such a program,

called SCHVUOS, was written and it gained both its power and small

size by capitalizing on SCHATCHEN's matching capability. SAINT's

simplifier was a LAP (the machine-language assembler for LISP)

coded subroutine written as a Master's thesis by Go ldberg in

1959 [21].

SCHVUOS does not assume a standard (canonical) form of an

expression. This means that it will be slow when the expressions

to be simplified are large. In integration, however, it is rare to

encounter large expressions. The speed gained by a canonical order

can be seen in the following example. Suppose, two simplified

expressions are to be added. If the expressions are to be canon-

ically ordered, then the addition process is basically a merge of

the expressions with a simplification occuring if two terms are

identical except for a constant factor. If, however, the express-

ions are not ordered then we generally require a two stage process.

Given a term in the second expression we must determine if there

exists a term in the first expression which is identical to it ex-

cept for a constant factor. This may require a complete traversal

along the first expression. If the number of terms in each of the

two expressions is n, this process takes on the order of n 2 term-to-

55

termmatchingsteps. Thecanonicalorderschemerequiresonlyon

theorderof n steps. However,sometimemustbespentin deter-
miningthecanonicaldescriptionandkeepingits valuearound.

Furthermore,theroutir_sthat generatethecanonicalorderare

usuallyveryspaceconsuming.Thus,theuseof a canonicalorder

is onlyworthwhileif theexpressionsare to beheavilymanipu-
lated.

Ashasbeenimpliedin theabove,muchof theprogrameffort

andexecutiontimein a standardsimplificationprogramis spent

in collectingtermsin sums.Relatedeffort is spentin collecting

exponentsin products.In SCHVUOSthecollectionof termsin a

sumis handledbycalling SCHATCHENandaskingit to determinethe
coefficientof thefirst termin thesum.

SupposewehadtheexpressionEl8,

(El8) 2x+ 3x2y+ z + x + yx2

thenSCHVUOSwill strip thefirst termof thesumof its coefficient

andgeneratethepatternPIS:

(PI5) A/COEFFPT,NUMBERX+ B/COEFFP

SCHATCHENwill yieldA=3,B=3x2y+z+yx2. NextthepatternPI6is

generatedontheexpressionB. NowSCHATCHENwill resultin A--4,
B=z.

2
(PI6) A/COEFFPT,NUMBERXY+ B/COEFFP

56

Notethatx2yandyx2 arerecognizedasequivalent.Thus,the

simplifiedsumis El9

(El9) 3x+ 4x2y+ z

Theoperationof collectingexponentsin aproductis handled
similarly.

Thebasicsimplificationprogramrequiresonlyabouttwopages

of LISPcodein contrastto a typicalLISPsimplificationprogram

(suchasKorsvold's[33]) whichrequiresabout20pagesof LISP

codeandhasthesamepower,for ourpurposes,asdoesSCHVUOS.

SCHVUOScontainssomeunusualsimplificationrulesbecauseof

the integrationenvironmentin whichit operates.Thus,arcsin(sinx)
simplifiesto x andsin(arccosx) becomes_ "_. Moreover,

1+2logy + logz becomesy2ze. (Thistransformationis alsoe
handledbya call to SCHATCHEN.)

Thesimplificationof anexpressionis donerecursively. Each

operator(e.g., PLUS)first simplifiesall its arguments.The

exceptionis TIMESwhichresultsin 0 if anyof its argumentsis 0.

It is possibleto achieveaneconomyif expressionswhichhave

beensimplifiedin thepastarenotsimplifiedredundantly.This

hasled to theAUTSIM-bitin FORMAC[63]andto a similardevicein

Martin'ssimplificationprogram.In SCHVUOSonecansometimesachieve

this effectbysettinga flag whichmeansthat theargumentsof the

toplevel operator,PLUS,say,arealreadysimplifiedalthougi_their

sum,say,neednotbesimplified. This is donein thedifferen-

tiation programusedin SIN.

57

Attitudes Toward Simplification

There seems to be a wide range of attitudes of people in the

field of algebraic manipulation regarding the role that an alge-

braic manipulation system should play in simplification. One view,

let me call it the conservative view (held by Fenichel, for example

maintains that the system should not simplify expressions until

specifically told to do so. In this point of view there is to be n

fixed system's simplifier and no fixed canonical order of expressio

The conservative view negates the view of those whom we shall call

the liberals (exemplified by the FORMAC design) who believe in a

canonical order, in a fixed simplifier and in implicit simplifi-

cation. One might even define a third viewpoint, a radical one, in

which the system will represent expressions internally in a form

quite different from their external form. Rational function progra

_LPAK [6], PM[12], and MATHLAB's rational function package _6])

adopt this approach. A radical system is prone to use the distri-

butive law indiscriminantly and to transform trigonometric function

into their exponential form in order to take advantage of the power

ful simplification algorithms which are then available.

Two considerations should guide one in designing an approach

to simplification within a given system. The first is the general-

ity of the system, that is the range of problems which could be

reasonably solved by it. The second is the efficiency of the syst_

in the solution of its problem. It appears to be an axiom that th_

58

moregenerala systemis, the lessefficient it is. Themostradi-

cal attitude towardsimplificationusuallybelongsto systemswhich

areverypowerfulandfast in solvingproblems.Wemust,however,

adopta ratherbroadoutlookregardingefficiencyin orderto

understandwhatmakesa liberal systemmoreefficient thana con-

servativeonefor theproblemsthat bothcanhandle.It is not

necessarilyexecutiontimewhichis beingdecreased,it is the

burdenof awarenessonthepartof a programmerwhichis decreased

in a liberal system.If youcanmakeassumptionsaboutthesimpli-

fier thenyouneedthinkmuchlessabouttheproblemwhileyouare

programmingits solution. Yettheargumentfor conservatismis too

strongto beneglected.It relies ontheaxiomthat thesimplest
expressiondependsontheproblembeingsolved. Twoexampleswhich

demonstratethis pointandwhichhavepreviouslyappeared(Moses[42],

Fenichel[19])are:
4

4x7 canbeharderto integratethan 4x3- x
x12+l (x4)3+I

Thelatter stronglysuggestsmakingthesimplifyingsubstitution
y=x4. Theformerdisguisesthis substitutionbut is morelikely

to bea result of anystandardsimplifier. Likewise, il+cosx

2 cosx
mayheharderto integratethan cscx - _ whichis equivalent

to it. Theformeris easierto graph,readandwrite. Thelatter

is immediatelyintegrable,whereastheformerrequiresthesub-

stitution y=tan_x.

59

Whilein theaboveexamplesonecanreasonablyhopeto trans-

formoneexpressionintoanother,this is not trueof theexample

below.Thisexampleis intendedto showthat eventhemostobvious

simplificationrulescanbeharmfulin somesituations. Suppose
ausergeneratesthreetermsof aninfinite series. Weshall

assumethat heis attemptingto obtaina generalterm. Supposethat
thefirst termis i, thesecond2x+landthethird 3x2+3x+l.I

maintainthat if thesetermswerepresentedasx+l-x,x2+2x+l-x2,
x3+3x2+3x+l-x3 thentheresultwouldcontainmoreinformationthan

before,for it wouldleadto a reasonablehypothesisthatthegeneral

termis (x+l)n-xn. Yetoneof thefirst rulesof anyexisting

simplifier is x-x40.

Oneargumentthatcanbegivenagainsttheradicalapproach
is givenin theproblemof integrating(x+l)I000. If oneexpands

this expression,asa rationalfunctionpackageis likely to do,

thenonewill usea greatdealof spaceandtimeandresult in an

unsightlyexpression.However,theexpressioncanbeeasilyinte-
igratedto yield _ (x+l)I001by leavingit in its original

form. RecentinformationindicatesthatfutureALPAKsystemswill

leaveexpressionsin their factoredformin orderto resolve

difficulties createdbyproblemssuchasthis.
Whatthenis theattitude thatoneshouldadopttowardsimpli-

fications?A reasonableonewouldbeto useeachof theseattitudes

wheretheyaremostuseful. In caseswherethereis aneedfor a

60

greatdealof rationalfunctionmanipulationandrelatively little

patternrecognitiononeshouldadopta radicalattitude. Whenthe

problemis noteasily framedasa rationalfunctionproblemor

wherethecomputationaleffort is light, butwherethepattern

recognitionis notcrucial, thenyouadopta liberal attitude.
Finally, whena standardsimplifier will leadyouinto difficulty

youjust mustrestrict its effect.
Separatingtheradicalattitudewithina programfromthe

liberal oneis usuallyeasy-- thereis a separateprogramto
handlerationalfunctions.Betweentheliberal andconservative

modestherearetoomanyintermediatesteps. Herewhatappears

to berequiredis a black-boxsimplifier withmanyinputsor in-

dicators, with theseinputsonecouldcontroltheeffectof the

simplifier. It wouldbeinterestingto seeif onecouldformulate

a languagein whicha program(or auser)couldcommunicatewith

thesimplifier. Forexample,it couldcheckcertainindicators

beforeattemptinganygivensimplification. Thecostfor such

checkingcouldbequiteminimal.
Anexampleof theuseof sucha simplifier is representedas

follows: A commonsimplificationrule is (ab)m- ambm. However,

in generalthis rule is inaccurate(e.g.,whena=-l, b=-l, m-_,the

left-hand-sideyieldsI, theright-hand-side,-i, assuminga _tandard

interpretationof thesquareroot). If onesuspectsthat this rule

will leadto difficulty thenonecanleavea test conditionin the

61

indicator for this rule which will weed out those cases in which

the result is erroneous.

CHAPTER 4

SIN - THE SYMBOLIC _EGRATOR

Introduction

In this chapter we describe the operation of SIN. At first SIN's

flow of control is analyzed. Then each of the methods used is described

in detail. Finally, the performance of SIN on two examples is shown.

Throughout this chapter the contrast between SIN's and SAINT's approach

and methods will be made clear.

Flow of Control and Subproblems in SIN and SAINT

A problem given to SIN may be said to pass through the three stages

of Figure i.

Stage I

J Problem issimple problem?

No

Yes Return integral

Stage 2

Problem can be_

transformed or

solved by spe-

cial methods?

No

Stage 3

Yes

Either

i. Apply SIN to a trans-

formed problem and

return value of SIN

or

2. Solve problem using
internal mechanisms and

return result as value.

I Problem can be
solved by more Yes

_eneral methods?

No

Return notice of failure

Figure i - The 3 Stages of SIN

Return integral

62

63

Asfigure i indicates,thefirst stagesolvessimpleintegration

problems.In thesecondstage,wedeterminewhetheroneof aboutten

specializedmethodsis applicableto theproblem.Thisdeterminationis
madebya routinecalledFORMandis quitefast. If amethodis found

to beapplicabletheproblemwill beeithertransformedandSINwill be

askedto integratethetransformedproblem,or theproblemwill beinte-
gratedusingtechniquesinternalto themethods.If nomethodis found

whichis applicable,a moregeneralmethodwill b_calledin stage3 in

orderto solvetheproblem.In this chapterweshalldescribea third

stageconsistingof a simpleIntegration-by-partsroutine. In Chapter

5 weshalldescribetheEdgeheuristicwhichweexpectwill bethebasis
of methodsusedin this stagein thefuture.

Sincemostproblemsareexpectedto besolvedbystagesI and2,

weshalldescribetheorganizationof thesestageshere. Thecontrol

of themethodsusedin stage3 is specificto thesemethodsandwill
bedescribedseparately.

Wenotethat themethodsof stage2 cancall SINto solvesub-

problems.Whenthis occursthe flowof controlandsubproblemsis given
byFigure2.

®

®

®

®
Figure 2 - Usual Flow of

Control and Subproblems
in SIN

It
® ®

®

Figure 3 - Flow of Control

and Subproblems in SIN

When Problem is a Sum of

Three Terms

64

If a subproblemis a sum,theneachtermin thesumwill beinte-

gratedseparately,andthe flowis givenbyFigure3.
It shouldbenotedthat if amethodin stage2cantransforma

problem,theproblemis notpassedto anothermethodin stage2 or stage

3, eventhoughthetransformedproblemcannotbeintegratedbySIN. For

example,
X

sin(e)dx is transformed to dy after substituting y=e x

in stage 2. 15in-'-_-'Y dy cannot be integrated by SIN. Thus, SIN concIudes
Y

o

that Jsin(eX)dx is not integrable by it and will not pass it to stage 3.

In strietiy enforcing such a decision we are depending upon the

methods to employ tight progress requirements. If the progress require-

ments are made too tight, then few problems would be integrated by the

methods of SIN's second stage. If, however, they are made too loose,

then the methods of stage 2 would verify the hypothesis that they are

applicable in problems in which they, in fact, are not appropriate, and

thus SIN would fail to solve these problems. The experiments with SIN

which are described in Appendices C, D, and E indicate the degree to

which we succeeded in finding good progress requirements. We wish to

point out that once such a discipline is successfully imposed on the

methods, one is in a position to relax the requirement against backtracking,

and thereby obtain somewhat greater power. We have not yet done so in

SIN's second stage.

SAINT, in contrast to SIN's stages i and 2, will allow a problem to

generate more than one subproblem. However, only one of the subproblems

generated from any given problem must be solved in order to integrate the

given problem. In general, the subproblems generated by SAINT during the

65

courseof solutionwill forma treestructure. Figure4 is a simplified

descriptionof theflowof controlandsubproblemsin SAINT.

Figure4 - Simplifiedflowof
control(singlearrow)andsub-
problems(doublearrow)in SAINT

If aproblemin SAINTgeneratesmorethanonesubproblem,thenode

in thetreecorrespondingto it is consideredto beanORnode.Thus,

onlyoneof thesubproblemsmustbesolved. If theproblemis a sum,

a similar complication to the one in SIN is made. The node generated

for such a problem is called an AND node. Each of the terms in the

sum becomes a subproblem, and must be integrated. AND nodes are indi-

66

caredbyanarcacrossthebranchesfromthatnode.Thus,in general,
a goaltree in SAINThastheformof Figure5.

)

)

Figure 5 - A Subproblem Tree in

SAINT when sums are present among

the subproblems

All subproblems in SAINT are given to IMSLN. This includes the

original problem and this fact is not shown in Figure 4. IMSLN thus

acts like SIN's first stage. IMSLN has its own methods of solution.

If it fails to solve the subproblem or some simple transformation of it,

the subproblem will be put on the subproblem tree.

The routine LOOP (see Figure 4) has access to a list of subproblems

to be tried called PLH. This list is ordered so that the first member

of the list represents a subproblem which has the lowest depth of nested

operators (e.g., PLUS, TIMES, COS) _n the internal representation of the

problem. LOOP will select the first subproblem on the list. It will

67

thenaskeachof themethodsof SAINTcalledtheheuristictransformations
by Slagle to determine if they can transform the subproblem. These methods

will be guided by information about the subproblem called the character of

the subproblem. The character contains information such as whether the

subproblem represents a rational function, an elementary function of ex-

ponentials or trigonemetrie functions, etc. This information is used to

limit the number of heuristic transformations applicable to a problem. Yet

even with the use of the character mechanism as many as Ii out of the 17

heuristic transformations may be applied to a single subproblem.

The flow of control and information in SIN is called hierarchical.

In a hierarchical organization, subproblems which are communicated between

one routine and a second are private to these routines and are not known

to the rest of the program. SAINT's organization can be called data base

oriented. In such an organization the goal is to transform the data base

(i.e., the goal tree in SAINT) to a desired state. In SAINT the desired

state is a tree which has a path from the top node (the original problem)

to a bottom node in which each node represents a solved problem. In a

data base oriented organization control is relinquished to routines which

manipulate the data base. In SAINT, all the heuristic transformations

relinquish control to the IMSLN program.

SAINT's data base oriented approach allows and, in fact, may be said

to encourage the program to backtrack, that is to leave one path of the

tree and start on another. SIN's approach is to discourage backtracks

at the first two stages. Backtracking is allowed in stage 3. However,

in stage 3 backtracking is only of a limited nature.

68

Conventions

In describing SIN we shall use the usual convention that the

variable of integration is x. SIN is actually a function of two argu-

ments. The first is the expression to be integrated and the second is

the variable of integration.

Below when we use the phrase "is a constant" we shall mean that

the expression contains no occurrence of the variable of integration.

Thus, sin2x + cos2x is not a constant when x is the variable of inte-

gration.

We shall not concern ourselves here with difficulties which may

arise due to the unsolvability of the constant or matching problem for

the elementary functions. For a discussion of these difficulties see

Appendix B.

By the elementary expressions of x we mean the set of expressions

composed of

I) constants, 2) x, 3) trigonometric functions of x (e.g., sin(x),

cos(x)), 4) logarithmic and arctrigonometrie functions of x (e.g.,

logeX, arcsin x), and closed under the operations of addition, multi-

plication, exponentiation, and substitution.

By an elementary expression i_n f(x) (abbreviated elem(f(x)), we

mean an expression obtained in the manner above, but where f(x) replaces

x in the definition Thus, for example, (e x + l)e 2ex + e 2x• is an elemen-

tary expression of e x. The expression xe x, on the other hand, is an

x
elementary expression of x, but not of e .

By a problem inte_rable in finite term_ we mean a problem whose

integral is representable by an elementary expression.

69

First StaKe of SIN

The first stage of SIN uses the following three methods:

Method I If the integrand is a sum, each term is integrated separately

by calling SIN iteratively and the results are added.

Method II If the integrand is of the form

[Eui(x)]n, where n is a small positive integer, expand the

expression and apply Method I.

Method III If the Derivative-divides routine is applicable, return its

results.

The first two transformations are made so that the rest of the

program can assume that the integrand is a product (though possibly a

trivial product as in x or in eX). The third method in this stage is

the method which has led us to call this stage the stage that solves

simple problems.

We shall now describe these methods in some detail.

I) Method I is an oft used method in practice. Using this method

one avoids the difficulty of integrating dissimilar expressions such as

sin x + ex. Integral tables, it will be noted, shun entries which are

sums. However, this is not a safe rule to follow, in general. For

example, let us consider _J(ex2 + 2x2eX2)dx. Neither of the terms in

this sum is completely integrable in terms of elementary functions.

2

However, the sum is the derivative of xe x . Hence, breaking up the terms

in the sum and integrating them separately can disguise the integrability

of the sum. This difficulty was known throughout the course of this re-

search, and a heuristic for overcoming it in some cases was designed.

The heuristic that has been considered is of the following nature.

Suppose we have a product of terms of the form f(x)g(x)h(x). The deri-

vative is frequently of the form f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'(x).

Thus if one finds an integrand which is a sum such that two terms in the

70

However, no extension to this method has as yet been implemented.

Slagle considered this method to be sufficiently safe so that he

invariably followed it also.

_(sin x + eX)dx = _sin x dx + _e x dx

II) The reason for method II can be seen by considering the problem

_(x + eX)2dx. SIN has no machinery which deals with this problem in its

present form. However, if the problem is given as _(x2+ 2xe x + e2X)dx,

then the problem is easily integrated.

Example

_(X + eX)2dx = _(x 2 + 2xe x + emX)dx

III) The Derivative-divides method is the heart of this stage in SIN.

As we shall see many problems are integrated by it quite quickly. The

inclusion of this method at this place in the program has an important

methodological basis. It is presumed that in many computer problem

solving systems there are methods of solution which solve most con_aonly

occurring problems relatively quickly. If these methods are employed

first by a problem solving system then many problems will be dispensed

with in short order. Thus, the problem solving system will be able to

afford to utilize expensive machinery in its later stageS.

The Derivative-divides routine checks to see if the problem is of

the form:

sum are related by having two factors in each of the forms f'g and fg',

respectively, and with the rest of the factors identical, then one can

guess the original product easily.

71

_c op(u(x))u'(x)ax,

where c is a constant, u(x) is an elementary expression in x, u'(x) is

its derivative, and o p is an elementary operator. Op may be one of the

following operators: a) identity b) sin c) cos d) tan e) cot f) sec

g) csc h) arsin i) artan j) arsec k) log. Three more possibilities

for o__ involve the exponentiation operation. These presume that the ex-

ponential function has only one nonconstant argument. Thus, we get the

cases 1) u(x) -1 m) u(x) d, d # 1, n) du(x), where d is a constant. The

final case is when the integrand is a constant and then u(x) is trivial.

In that case the integral is simply cx.

The method of solution, once the problem has been determined to

posses the form above, is to look up op in a table and substitute u(x)

for each occurrence of x in the expression given in the table. In

other words, the method performs an implicit substitution y = u(x), and

obtains the integral]c op(y)dy by a table look up.

Using this method the following examples can be integrated.

1 211 sin x cos x dx = _sln" x, op = identity, u(x) = sin(x), u'(x I = cos(x),

c =I

I x2 i x 2 i
2) xe dx = _e , op = du(x) u(x) = x 2 u' (x) = 2x, c 2, , = --

31 _-_Z dx = i(i + x21312, op = u(x) d. u(x) = I + x2, u'(x) = 2x,

i
C = --

2

4) e_l-_eX dx = log(l + eX), op = u(x) -I, u(x) = i + ex, u'(x) = ex

c = i

gee Appendix A for a description of integral table look-up methods.

72

5) rjx3/Zdx =_5/2_, op= u(x)d, u(x)= x, u'(x) = i, e = I
A fewmore examples will indicate certain aspects of this method.

6) cos(2x + 3)dx = _sin(2x + 3), op = cos, u(x) = 2x + 3, u'(x) = 2,

1

2

The Derivative-divides method performs an implicit linear substi-

tution in this case. SAINT would have performed an explicit linear

substitution and would have required two calls to IMSLN to solve the

problem.

7) _2yze2Xdx yze 2x d u(x)= , op = , u(x) = 2x, u'(x) = 2, c = yz

This method handles constants easily. Constants can be generated

or can be present in the integrand. SAINT would have removed the con-

stants explicitly.

r xx =l 3. x.
8) Ocos2(eX)sin(e)e dx -_cos £e), op = u£x)d,"" u(x) = cos(eX),

c = -I

This example demonstrates that the integral may be fairly complex

and the method will still apply.

One of the experiments which was made with SIN was to attempt the

86 problems attempted by SAINT (see Appendix C). Interestingly enough,

this method of Derivative-divides was able to solve fully 45 out of 86

problems. The average time on the 7094 was 0.6 seconds.

It is hoped that the above examples convincingly demonstrate the

usefulness of this method at an early stage in an integration program.

The method is to be recommended for those who desire an integration

capability, but who are unable or unwilling to avail themselves of a

more general program.

As was mentioned earlier, SAINT's IMSLN routine performs some

73

functionswhicharesimilarto SIN'sfirst stage. IMSLNemploysa
tablesimilarto that in theDerivative-dividesroutinebutsomewhat

larger. It alsoperformseighttransformationscalledalKorithmic

transformations by Slagle. These transformations are attempted one at

a time. If one of them is successful the transformed problem is used

and the original problem is not considered again. Two of these trans-

formations are the same as method I and II in this stage of SIN. The

others factor a constant or a negation operator from the integral;

employ half angle identities; make a linear substitution; and perform

certain simplifications on the integrand. As has been pointed out

above, IMSLN also tends to the tree of subproblems and can determine

if the original problem has been solved. IMSLN doesn't actually solve

many problems so much as it is able to transform a great number of

problems into a form which is more easily solved by the rest of SAINT.

It would appear that SIN's Derivative-divides method solves more problems

immediately than does IMSLN. SAINT's Derivative-divides heuristic trans-

formation, which is quite powerful, is not applied to a problem until

much later in the course of the solution.

The Second StaKe of SIN

If a problem fails to be solved by SIN's first stage, then it is

determined whether one of eleven additional methods is applicable to

it. In order to determine which method is to be applied clues are ob-

tained from the expression. We have called the technique by which these

clues are used hypothesis formation (see Chapter 2). The routine that

obtains these clues and conducts the formation of an hypothesis is called

FORM. Associated with most of the methods are patterns in SCHATC}{EN

74

which serve to differentiate the problems which are solvable by each

method from those solvable by other methods. It turns out that few

problems have more than one method applicable to them. In the cases

where a conflict does exist (e.g., in solving problems with algebraic

integrands) the actual method chosen appears to have little effect on

the cost of obtaining a solution.

In this stage of SIN, a single method (Method 6) handles problems

which involve trigonometric expressions. When FORM sees a subexpres-

sion of an integrand which is a trigonometric function of a linear

argument in the variable of integration, this subexpression will act

as a clue, and FORM will call Method 6 to validate the hypothesis that

a substitution can be made for the trigonometric functions. If Method 6

decides that such a substitution is not applicable (e.g., _sin x eXdx),

then it will return the value NIL (FALSE). In such a case, FORM might

entertain another hypothesis but since there are none for trigonometric

functions, FORM will also return the value NIL. If Method 6 finds that

a transformation is applicable, it will hand SIN the transformed pro-

blem. The value of SIN, with a proper substitution to account for the

transformation that was made will be returned as the value of Method 6

and of FORM.

Examples of problems integrated by this stage of SIN:

(It is probable that none of these could be integrated by SAINT.)

i) r/jA2 + B2sin2X dx
sin x

2

2) _(i + 2x2)e x dx

75

e 2x

3) J A+_Be x dx

4) _x _'-_"_ dx

5) fxl/2(x+ l)5/2dx

Below we describe each of the methods used in this stage. Each

description contains the clue which FORM uses to dete_ine whether the

method might be applicable. A more extended description of the manner

in which FORM operates will then follow.

Method I) Elementary function of exponentials.

This method is applicable whenever the integrand has the form of

bx.+c.
ii

an elementary function of ai , where the a i, b i, and ci are con-

stants.

bx+c
Clue - a subexpression of form a ; a, b, c are constants.

e_2--_3 __ dx becomes dx, y = ex

dx becomes dy, y = ex

ex+l _+y x x+l x_ dx becomes dy, y = e and e = ee

_ log e I0 xlOXeXdx becomes jy dy, y = e

76

bx.+c. (bix+ci)loga.
Method- ai l i is transformedinto aI al I in order

to convertall basesto a cormnonbaseaI. HereaI is thefirst base
encounteredin the integrand.

bx+c c bx

a I where c # 0 is converted to ala I . This facilitates the

transformation to be made.

The substitution y = a_ is made. Thus, each a_ x is replaced by

b

y and the resulting expression is divided by y log e al°

Notes - What is controversial about this method is that in comverts all

bases to a single base which in not necessarily e. This may lead to

the introduction of unnecessarily clumsy constants (e.g., iog53).

SAINT's method in this case was somewhat different. SAINT did

not handle different bases, nor all cases where constants (i.e., ci)

were present in the exponent. It did, though, find the greatest common

kx
divisor of the b., k, say, and made the substitution y = a I . In SINl

this will be handled by algorithm 2 which will make the substitution

k
z = y after y = a_ is made by the current method. The method that per-

k
forms the substitution z = y was not present in SAINT although it was

suggested as an extension

Method 2) Substitution for an integral power.

This method is applicable whenever the integrand is of the form

x Elem(xki), where c, k. are integers and where
C l

k = gcd([c + i, k I, k 2 }), k # i

Clue - Instead of obtaining a clue which determines whether this

transformation is applicable, FORM obtains a clue which determines

whether this transformation is not possible. FORM will note that this

transformation is not applicable when it sees a subexpression of the

77

a+bxforme or sin(x). If noneof theothermethodsis applicable,and
nosuchcluehasbeenfound,this transformationwill becalled.

IX3 sin(x2)dx becomes _ sin y dy, y = x2

x dx becomes I _ dy, y =
3

y +I

k
Method - Substitute y = x

Note_...___s- This method was suggested but not i_lemented by Slagle

who embedded it in a larger method _ich was i_lemented in S_ in two

separate methods (2 and 3).

This method is currently restricted to integer exponents. It

should be extended to handle exponents such as 3_, 2a in

x 3a sin(x2a)dx

Method 3) Substitution for a rational root of a linear fraction of x.

This method is applicable when the integrand is of the fo_

ax+b n ax+b n_

\cx + d" ' " "

where the n i a_ m. are relatively prime integers with some Imil # i,
i

and with a, b, c, d constants and ad - bc # 0.

Cl___u_-A subexpression of the fo_

\c--_-_ ! a, h, c, d constants; n, m, relatively prime integers, Iml _ i

78

_x _xx + 1 dx becomes _2(y 2 - l)y2dy, y = x_-_-T

The above two problems were attempted and not solved by SAINT.

1/2 1/3 dx becomes 6y 5 y-_--_-_dy,l y = xl/6

- x

[El r 2y2 3
J_2-_-_ dx becomes J(2y z . 1)2 dy, y =

Method - Let k = least common multiple of the m i.

lax+______b_ I/k

Substitute y = cx + d

Note___s - The restriction ad - bc # 0 assures that the substitution

is non-trivial. If ad - bc = 0, then _x 0.

Slagle suggested methods 2 and 3 as a single method. Considering

them as two separate methods facilitated the coding. This method is

an extension of Slagle's suggestion since it covers linear functions.

Even this algorithm should be split into two parts. One would

handle the case restricted to (ax + b) n/m, the other the more general

ax + b n/m

case \c-_-d/ "

Much of the time only the former is needed, but the machinery for

handling the latter, which is more expensive, is employed.

A weakness of this routine is its inability to deal with variable

exponents. These would usually result in the generation of a reduction

formula as opposed to an integral. The great advantage of an integral

table over SIN Currently is the presence of the reduction formulas.

The Edge heuristic (See Chapter 5) can generate some reduction formulas,

79

butnotmanyat present. (Orcourse,aninstanceof avariableexponent
shouldresult in a solutionin SIN_)

Method 4) Binomial - Chebyschev

This method is applicable whenever the integrand is not a rational

function and possesses the form

Axr(cl + c2xq)P , where A, Cl, c 2 are constants, p, q, r are ratio-

nal numbers and ClC2q p # 0.

Clue - A subexpression which is a nonintegral pOwer of a rational

function. This is followed in FORM by a match of the integrand and the

form above.

fy4 -Ix4(l - x2)-5/2dx becomes (I + y2) dy, y = x

[-2Y 6

_xl/2(l + x)5/2dx becomes _(yZ _ 1/5 dy, y = _'_

Method - Binomial conversion to Chebyschev form (substitute y = xq).

Thus A+A/q, and r 2 _ p, r I + r +_____!l-I
q

Make the first applicable transformation

a) r I integer, r 2 > 0

Substitute z = c I + c 2 y

b) r 2 integer, r I a rational number with denominator d 1

I/dl
Substitute z = y

c)
r I integer, r I < O, r 2 rational number with denominator d 2

Substitute z = (c I + c2Y) I/d2

80

d) rI + r2 is an integer

Substitute z = \ Y ,

Otherwise, return notice of failure to integrate problem.

Notes - This method was also suggested but not implemented by Slagle.

It has the advantage of being a decision procedure. That is, if an inte-

grand has the form given above, then either the method yields the integral

or the problem cannot be integrated in finite terms. This was proved by

Chebyschev (see Ritt [54], p. 27).

The argument used is roughly as follows: If r I, r 2, or r I + r 2 is an

integer, then the substitutions above result in rational functions and thus

can be integrated. Otherwise we know from Abel's Theorem (see Chapter 5)

that the integral, if it is expressible in finite terms, is a sum of an

algebraic function and logarithmic terms. The residue of a Chebyschev

function is everywhere 0. Hence the integral cannot contain logarithmic

terms. Further analysis shows that the assumption that the integral is

algebraic leads to a contradiction.

In this case also the integral tables contain many entries which

are reduction formulas for the cases when p, q, r are parameters. Some

such capability should be present in SIN also.

Method 5) Arctrigonometric substitution_

This method is applicable whenever the integral is of the form

R(x, _x _ + bx + a) where a, b, c are constants and R is a rational

function of its arguments.

Clu..___e- A subexpression of the form

(cx 2 + bx + a) n/2, where n is an odd integer.

81

x4
(I - x2)5/2dx becomes

/A + B 2 - B2yZ2 dy becomes

i - y

sin4z dz, y = arcsin x

Ocos4z

_ A2 + B2)cos 2z
(i - A2 + Bz sin2z) az'

B 2

z = arcsin

+ B 2

Method

First eliminate the middle term of the quadratic by completing the

square

b

y = x "1-_,

yielding the integrand in the form

b /cy 2 +a b2
R(y - _, - _c)

b 2
Let A = a - --

4e

C = e

If C > 0, A > 0, substitute z = arctsn y

If C > 0, A < 0, substitute z arcsin___= - Y

If C > 0, A = 0, replace the quadratic by_ y

If C < 0, A > 0, substitute z = arcsec_y

If A and C are both numbers, then the signs are determined trivially.

If A or C are parameters, then the user will be asked whether they are

positive, negative, or zero through an appropriate message at the console.

For example if the value of A is e, a message would read

IS e POSITIVE

An answer of "yes" is expected if e is in fact positive. However, the

program can frequently determine _hether A or C are positive. This is

82

donebyassumingthat all parametersarereal valuedandbyusingthe
fact that sumsof squaresof real numbersarepositive. Thus

2d2 + 3e4 + 5

is determinedto bepositive,whereas
-d2 - 2(e+ f)2

is determinedto benegative.A singleSCHATCHENrule is usedin making

this determination.

Notes
In caseswherethecoefficientsareparameters,it is possibleto

runtheprogramseveraltimesandanswerquestionsdifferently eachtime.
SAINThadtwotransformationswhichperformedthefunctionof this

method.Onemethodeliminatedthemiddletermfromall quadratics,another

madethearctrigonometricsubstitutionsin all quadraticswithmissing

middleterms.Thearctrigonometricsubstitutionsarenormallymadefor

rootsof quadraticsaswehavedoneandnot in all quadraticsasSAINT

attemptedto do. SAINTalsoimplicitly requiredthat thecoefficients

in thequadraticbenumbers.Thekindof interactionbetweentheuser

andtheprogramwhichis requiredwhenoneallowsnonnumericalcoefficients

becamepracticalwhentime-sharingsystemswereintroduced.

Method 6) Elementary function of trisonometric functions.

This method is applicable when the integrand is an elementary

function of the trigonometric functions applied to linear argument in

the variable of integration.

Clu._____e- TRIG(a + bx) where TRIG _ {sin, cos, sec, tan, cot, ese]

83

I) _sin2xdxbecomes_(½_I_cos2x)dx

2) _/A2 + B2sinZx dx becomes _ _AZ _ BZ(I - ¥2_
sin x 2 dy, y = cos x

i - y

i dx becomes _dy, y = tan 21--x3) i + cos x

Method

I) In problems where the arguments of the trigonometric functions

are not the same throughout the integrand, the following cases are

examined.

-cos(m - n) cos(m + n)x
a) sin m x cos n x dx = 2(m - n) x - 2(m + n)

sin(m - n)x sin(m + n)x
b) sin m x sin n x dx = 2(m - n) - 2(m + n)

c) _cos m x cos n x dx = sin(m - n)x + sin(m + n)x
2(m - n) 2(m + n) m, n, constants

Otherwise, the method returns notice of failure to integrate the problem.

II) If the arguments are the same but are not identically x, a

linear substitution y = a + bx is performed and the procedure continues

with the revised problem.

III) If the problem is of the form

_sinm(y)cosn(y)dy; m, n integers

II ½ 1 n-ma) m < n, transform to (_sin 2y)n(+_cos 2y)" _ dy

_i nl i m-n
b) m _ n, transform to (_sin 2y) (_ _cos 2y)" 2 dy

IV) All trigonometric functions are transformed into sines and

cosines (e.g., tan y _ sin y) in order to test if the resulting expres-
cos y

sion is of the form a or b.

m _ -n

84

F 2n+l 2
a) Jsin (y)Elem(sin (y),cos(y))dy.

In this case substitute z = cos(y)

b) _cos2n+l(y)Elem(cos2(y),sin(y))dy

In this case substitute z = sin(y).

V) All trigonometric functions are transformed into secants and

tangents in order to test whether the resulting expression is of the

form:

Elem(tan(y),sec2(y))dy

In this case substitute z = tan(y).

i sin y is made.
_I) Finally, the substitution z = tan_y i + cos y

Notes - In the case where the integrand is a rational function

of trigonometric functions of x all the problems can be reduced to

rational functions. The choice of the transformation governs the

simplicity of the resulting rational function and the final answer.

The transformation in step VI above which is always applicable in these

situations frequently leads to a great deal of work and to complex

results. Fortunately, a number of simpler transformations such as

those of steps III, IV, and V are easily recognized and are usually

applicable.

_AINT included all of the transformations given above, but they

were embedded in different places in the program. I is included in

the integral table. II is an algorithmic transformation, as is step IIl.

85

and V are three separate heuristic transformations. V is yet another

heuristic transformation. The initial stage in steps IV and V is per-

formed by still another method. This organization of the methods appli-

cable to trigonometric functions led to the generation of extraneous

subproblems since the heuristic transformations were disjoint and were

not aware of each others actions, nor, in fact, of their own actions.

For example, the method which performs the preliminary transformation

in steps IV and V (e.g., tan x _ sin______xx)must be inhibited from performing
COX X

the opposite transformation later (e.g., sin _ tan).
sec

More work is necessary in this area in handling arguments to

trigonometric functions which are linear, but different (e.g., _cos(6x)eX).

Some programs along this line have been designed by Edmund Berkeley, but

they have not been fully implemented.

Method 7) Rational function times an exponential

This method is applicable whenever the integrand is of the form

R(x)e P(x), where R(x) is a rational function in x and P(x) is a polynomial

in x.

Clue - A subexpression of the form eP(x) , where P is a polynomial

in x. If P(x) is linear in x, this method will be attempted if method

i is not applicable.

i. _xeXdx = xe x - ex

=e.._____
2. x eXdx x + 1

2x2)eX2d x x 23. (i + = xe

r x 2
4. Je dx: not integrable

86

5. dx: not integrable

Method - This method once again is a decision procedure. That

is, the method can tell whether a problem can be integrated in finite

terms or not. The method is an improvement of the decision procedure

in Ritt[54](p. 48) which handled the case by solving a system of

linear equations. The procedure is an application of the Liouville

theory for integration about which more will be found in Chapter 5.

This procedure is similar in flavor to Risch's [53] recent theoretical

treatment of results in the Liouville theory.

LetR(x)
clxml + Sl(X)

q(x) where SI, Q are polynomials

S 1 is a polynomial of degree < ml,

C I is a constant, C I _ 0.

We know from the Liouville theory that the integral (if any) will

be a multiple of e P(x). (See Pitt [54], page 47.)

Suppose the integral is represented by

(al(x) + bl(X))eP(X) , then

clxml + Sl(X)

P'(x)a I + a I + P' ' = R(x)' (X)bl + hl Q(x)

Cl xml

Let al(x) = p-_7_--, then

mlClXml - i CI xmlQ' clxmlp"- p,---q-(p,)_-
a_ = q

and

P'b I + b_ = R(x) - P'a I -

mlClXm I - i clxmlp,, clxmlQ

S 1 p, + (p,-_-_2- +--_7_

a_ = Q

!

The numerator of P'b I + b I is a polynomial Tl(X), say, and a rational

function remainder, Ul(X) say. Let the leading term of Tl(X) be g2x m2, and

87

the rest of Tl(X) be S2(x). Now continue the process indicated above

until some T i (Tn, say) is 0. This is guaranteed to occur since the

degree of the T. is decreasing. If at that time the corresponding U.
i l

(i.e., Un) is also 0, then the expression R(x)e P(x) is integrable and

inlai(x)e P(x) .the integral is E= If U n is not 0, then the problem is

not integrable in finite terms.

n n

Note that if U = 0, then R(x) - P' E a. - E a_ = 0.
n i=l I i=l l

n

Let a = E a.(x); then we obtain the relation
i=l I

P'a + a' = R

P'ae P + a'e P = Re P

(aeP) ' = Re P

ae P = ;RePdx

For the converse, we refer to Ritt. Also, note the discussion in

Chapter 5.

Notes - SAINT was able to solve the first two of the examples

above. Both were solved using the Integration-by-parts method of

SAINT.

SAINT was unable to integrate -feX2dx because it found that no trans-

formations were applicable to the problem after approximately one minute

of computation.

The fact that SAINT was unable to integrate this problem does not

necessarily mean that the problem is not integrable in finite terms. This

statement is also true of SIN, in general. This is due to the fail-safe

nature of the programs. When a fail-safe integration program results in

88

an integral then we know that the problem is integrable. When such a

program does not yield an integral then one still does not know whether

the problem can be integrated or not. A semi-decision procedure for

integration would, in finite time, result in an integral or in the state-

ment that the problem cannot be integrated in finite terms. Richardson's

result (see Appendix B) shows that for the integration problem as he

defines it, no decision procedure exists. Yet decision procedures exist

for many interesting subcases and especially when one avoids considering

the matching problems that Richardson shows are inherent in his charac-

terization of the elementary functions. SIN embodies some decision pro-

cedures. Future programs are likely to contain more (see Chapter 5).

One must be quite careful about the computational methods involved in

order to avoid the explosion which is apparently inherent in many decision

procedures in algebraic manipulation (see Moses[42]). We would prefer

to see expensive decision methods to be attempted as a last resort, such

as stage 3 in SIN. A final consideration regarding methods for integration

is that they should not be too radical or else the result will become less

meaningful to the human user.

This method was implemented using the rational function package of

MATHLAB [36]. SIN communicates with the rational function package by

a process called chaining. More will be said about chaining when we dis-

cuss the integration of rational functions.

Methgd 8) Rational functions

This method is applicable whenever the integrand is a rational function.

Clue - FORM generates no local clue for rational functions. The

applicability of this method is determined separately. Sometimes this

89

methodis calleddirectlybyothermethods(e.g.,methods2and4).

I. dx: -51o_(x+ i) +_Io_ (x2 - x + I) +_ arctan

_I_7L__ 1 1 1
2. _x- - I dx = -_io_ (x + I) + _log e (x + i) +_log e (x 2 - x + i) -

1 1 1 C x:+- _ arctan - _log e (x 2 + x + I) - _ arctan_/

3. _ j I dx -I i

B 2 -A2)x 2 -A_2 +A 4 2AB2 _ A3 log e (x + A) + -- loge2AB2 _ A3 (x - A)

Method - This method was programmed for the MATHLAB system by Manove

and Bloom under the direction of Engelman of the MITRE Corporation. The

integration procedure which is used is described in Hardy [25]. The

polynomial factorization routine used in this program essentially follows

Kronecker's method as described in Van der Waerden [65], p. 77-78. This

program is also written in LISP and is itself described in "Rational Func-

tions in MATHLAB," by Manove, Bloom and Engelman [36].

Note_____s- The power of this method makes the coding of the rest of

SIN a great deal simpler. SAINT did not have a powerful rational function

integration program (it could integrate polynomials and ratios of poly-

nomials with linear and quadratic factors) and it suffered thereby; much

of the trial and error in some problems for SAINT can be attributed to

its inability to integrate certain rational functions which arose as

subproblems. Some of the extensions which were made to SAINT (e.g.,

methods 2 and 4) could not have been made unless a rational function

program was present. Thus, the second stage of SIN lets this routine

clean up the details such as rationalization of denominators which could

be ignored in making the transformations.

90

Slaglerealizedthat theunavailabilityof a rational function
integrationprogramwasabasicdefectin SAINT. However his proposal

for the manner in which such a routine should be written was not the

best. He proposed solving linear equations to obtain a partial faction

expansion of the rational function. The method in MA_ is superior

computationally.

As was mentioned earlier the experimental work (e.g., debugging

and testing) was done using Project MAC's time sharing system CTSS. One

valuable feature of this system is the power to use programs written by

others. In our case it was valuable to have access to the rational func-

tion package of the MATHLAB system. To be sure, in conventional "batch"

processing one can employ large packages designed by others by using

intermediate tapes. In CTSS one can conveniently make use of a program

concurrently under development by another group, providing one is pre-

pared to spend some time for the process involved.

The rational function program which SIN uses is available in CTSS

as F_N SAVED. It is a separate core image from SIN and is called

using the chainin__ process given below.

a) SIN writes the problem to be integrated on file MANOVE LISP.

b) SIN saves itself as MOSES SAVED.

The widespread availability of time sharing consoles has allowed SIN

to be used by several people other than the author. "Bugs" in the pro-

gramhave been pointed out by Michael Levin of Information International,

Inc., Carl Hewitt and Peter Samson of Project MAC, _d Russel Kirsch of

the National Bureau of Standards. We would hereby like to express our

appreciation of their efforts.

91

c) SIN directs CTSS to execute FUIF, AN SAVED.

d) FUI_qAN reads MANOVE LISP.

e) FUI/4AN generates a solution to the problem.

f) FULMAN writes the solution on file MANOVE ANS.

g) FUI/4AN directs CTSS to resume MOSES SAVED.

h) MOSES (i.e., SIN) reads MANOVE ANS.

Experimentally the minimum time for this process has been determined

to be about 4.5 seconds of machine time. Most of the time is spent in

steps _ and _ in which 32k programs are loaded into core.

There are, at present, certain differences in the internal repre-

sentation used in SIN and FUI/4AN. These differences are eliminated,

whenever possible, by two interface routines present in SIN. The dif-

ferences consist of the following:

a) log has two arguments in SIN, one in FUIMAN.

b) PLUS, TIMES have variable number or arguments in SIN and only

two in FUIMAN.

c) No floating point numbers are allowed in FUI/4AN. Whenever

possible these are converted to rational numbers (i.e., (a'b) where a,b

are integers). Otherwise an error indication is given in SIN.

Method 9) Rational function times a Io_ or arctri_onometric function

with a rational argument.

This method is applicable whenever the integrand is of the form

R(x)F(S(x)) where F is log, arcsin, or arctan

R(x) and S(x) are rational functions

and where JR(x)dx is also rational.

92

Clu___e-

rational function.

F(S(x)) where F is log, arcsin or arctan and S(x) is a

x
I) x logeX dx becomes _-lOgeX - x dx

3

x dx
2) x2arcsin x dx becomes "_--arcsin x - 3 _ - x 2

3) 2 1 iog(x 2 + 2X) becomes x--_llOg(x 2 + 2x) - _+i I _x2 dx
x + 2x + I + 2x

[{ethod - Let T(x) = JR(x)dx

Solution is T(x)log(S(x) - _T(x) _-_ dx
s (x)

b) F = arctan

L s(x_
Solution is T(x)arctanS(x)- jl(x) _ + SZ(x) dx

c) F = arcsin

_T S'(x)Solution is T(x)arcsinS(x)- (x) dx

/l - SZ(x)

Notes - This routine handles three special cases of the method of

Integration-by-parts. The utility of these special cases is that they

direct the solution process quite clearly, whereas the more general sol-

ution methods may make false starts or require more extended analysis.

SAINT would have attempted to solve most of the problems that fall

under this category with its Integration-by-parts method. If we presume

that SIN had only the rational function capability of SAINT, then this

method would allow SIN to be mere powerful on these problems to which

this method applies. This is due to the fact that SAINT could not tell

how much effort it could reasonably expend on its Integration-by-parts

method and it chose to spend less effort of it than would be required to

integrate the third problem avove, for example.

a) F = log

93

_ethod I0) Rational function times an elementary function of

logc(_ + bx).

This method is applicable whenever the integrand is of the form

R(x)Elem(logc(a + bx)) where R(x) is a rational function and a, b, c,

are constants.

Clu_____e A subexpression of the form logc(a + bx).

attempted if method 9 fails to be applicable.

This method is

.[l°geX dx becomes _(y+-_i)
v(logeX + i)z eYdy, y = logeX

i)

i + logZx dx becomes dy, y = logeX

3) _ dx becomes _Ydy, y = e x

Method - Substitute y = log c(a + bx)

results in

R()Elem(y)_logeC dy

Notes - This method is used to reduce the problem to the exponen-

tial case where the powerful method 7 might be applicable. If method 7

is not applicable, the transformed problem stands as much a chance of

being integrated by SIN's current methods as did the original problem

in the logarithmic form.

Method ii) Expansion of the integrand.

This method is applicable whenever the integrand can be expanded

by distributing sums over products.

Clu_____ee- This method is used whenever all of the previous methods

have failed to be applicable. No clue for the applicability of this

method is found by FORM.

94

Zxamples

_ x(cos x + sin x)dx becomes _ (x sin x + x cos x)dx

_ x +e----_x dx becomes _ (xe-X + l)dx
x

e

x(l + eX)2dx becomes [(x + 2xe x + xe2X)dx

Notes - SAINT had two heuristic transformations which together per-

formed the job of this method. The first distributed nonconstant sums in

products, the second expanded positive integer powers of nonconstant sums.

In both cases, where Slagle considered the methods inappropriate, SIN

would have already applied one of the previous methods and solved the

problem. As a matter of fact, that is also true of the two problems

for which he considered the methods to be appropriate.

The Third Sta_e of SIN

This stage, the last stage of SIN, is the appropriate place for

methods of a rather general nature.

Two methods which properly belong in this stage have been programmed.

The first is the Integration-by-parts method. This method is used in

the experiment in Appendix C in which SIN was asked to solve the 86 problems

attempted by SAINT. Only two of those problems (i.e., Jx cos x dx and

fcos _x dx) required this method. The second method is based on the Edge

heuristic described in Chapter 5. A third method, a powerful Derivative-

divides method, has not been implemented, but will be discussed here.

In the long run it is expected that only one of these methods will

be used here--that is the method based on the Edge heuristic or some vari-

95

ant of it.

The Integration-by-Parts Method

i) _x cos x dx becomes x sin x - _sin x dx

x 2 . 2 _x2) _x log_x dx becomes _-_og2x - logeX dx

Method - Let Maxparts be twice the maximum of the value of a

constant exponent of any nonconstant factor in the integrand. Thus

2
Maxparts is 2 for x cos(x) and 4 for x cos x.

Consider any partition of the integrand into a product of nonconstant

factors g and h, where H(x) = jh dx can be obtained by SIN without calling

the Integration-by-parts method.

Now consider Jg'Udx. We require that this integral be found by

SIN by calling the Integration-by-parts method fewer than Maxparts times.

If both integrals are obtained, the solution is

_gh dx = gn - _g'H dx.

Notes - The crucial aspect of this method is embodied in the phrase

"consider any partition." This method is thus willing to attempt several

partitions of the integrand. It is thus searching for a solution, and

searching very blindly indeed.

In order to avoid searching too large a space, we require that H(x)

must be found without using this method. SAINT, which also had an Inte-

gration-by-parts method required that H(x) be found by lMSLN, which is

a stronger restriction. Likewise the Maxparts device avoids an infinite

search for the second integral. SAINT, which did not use such a device

96

appearsvulnerableto difficulties suchas in theproblem[sin____xxdx.
i _ r" xConsider h = sin x, g =--. Thus h dx = -cos x and Jg'H dx =
X

dx
xOne subproblem generated by dx is -- dx. This process

x X

can continue indefinitely unless measures are taken to curtail it.

(Actually sin x dx is not integrable in finite terms.)

The Derivative-Divides Method

The method of Integration-by-parts and the Derivative-divides method

are the two general methods that a freshman calculus student is likely to

learn. Let us recall that S_'s first stage employed a Derivative-divides

method. However, that method is not as general as it might be. The

Derivative-divides method attempts to determine whether the integrand can

be put into the form g(u(x))u'(x). If this is the case then the substi-

tution y = u(x) transforms the problem into Jg(y)dy. In stage i, g was

required to be a single operator. However, in a more general method g

would not be so limited and the follo_ng problems would be transformed

by this method. (Let us note again that this method is not available in

S_ at present.)

i) _cos x(l + sin3x)dx becomes _(i + y3)dy, y = sin x

2) i _dx becomes dy, y = logey

3) /1-----'-_x 1 + arcsin2x dx becomes dy, y = aresin x

The first two of these problems can be solved by SIN's second stage

(in particular by methods 6 and 10). The third problem is one of the

simplest examples of a problem which cannot be solved by SIN's first two

9?

stagesalongwith theIntegration-by-partsmethod.However, the Edge

heuristic will correctly guess the integral arctan(arcsin x).

SAINT had a Derivative-divides method which was more powerful than

SIN's. However, it suggested many bad transformations in some Cases.

The method essentially performed a search for a subexpression such that

the number of factors in the quotient of the expression and the deriva-

tive of the subexpression was smaller than the number of factors in the

original integrand. This is too strong a restriction sometimes.

A Derivative-divides method was designed but was never implemented

in SIN.

The kind of analysis we considered was as follows: Suppose the

integrand is f(x) and a nonlinear subexpression of it is u(x), then if

f--_-_--can be represented as g(u(x)), the method would propose substituting
u'(x)
y = u(x) and attempting Jg(y)dy. We should, though, restrict the kind of

sin x

functions g that we would allow. For example, in sin x + cos x we might

wish to disallow the substitution y = cos x since it introduces the alge-

braic term/_-----'y-7 into the denominator. If we make the conditions on

the g's sufficiently restrictive (e.g., rational, algebraic) then the num-

ber of substitutions per problem that this method would propose would be

small, and more significantly, each of the substitutions would be quite

reasonable.

Further Discussion of FORM

We would like now to discuss some of the aspects related to the

FORM routine in greater detail. We note that of the eleven methods

available in stage 2 of SIN, eight possess local clues which immediately

identify them to FORM. Method 2, substitution for an integer power,

98

possesses clues which allow FORM to reject the method in some cases.

Methods 8 (Rational) and Ii (Expansion) do not currently possess local

clues in FORM and are attempted whenever FORM fails to find an applicable

method.

As may be recalled from Chapter 2, one of the advantages of hypo-

thesis formation is that one can attempt to fit the problem to the method

at hand. Since FORM is quite aware of the methods which are available to

it, some such "fitting" could be attempted. This was done in the case of

algebraic integrands. If an expression is of the form /_-_, where R is

rational in x, then FORM will attempt to see if methods 3, 4, or 5 are

applicable. If they are not, then this problem is going to cause some

difficulty since it would appear that nothing else except stage 3 methods

will be available to solve the problem. On the other hand it is possible

that Methods 3, 4, or 5 are applicable, but that SCHATCKEN was unable to

make the match. Two excuses can be made for SCHATCHEN in this event. One

is that SCHATCHEN failed because the rational function R(x) was not ex-

panded (e.g., /i + x(l - x)), or that the rational function was not com-

pletely rationalized (e.g.,/x + x+I). FORM will thus determine if
x

these two transformations are applicable to R (not the whole integrand).

If they are, the problem is transformed to account for these changes and

an attempt will be made to consider Methods 3, 4, and 5 again. Hypothesis

formation is thus shown to be able to localize the difficulty in a problem.

An _xample of SIN's Performance

We shall now consider in some detail how SIN performs on the problem

99

/A +B2sinZxdxsin x

Thisproblemstretchesthecapabilitiesof SIN a good deal. Thus

it can be used to indicate some of the strengths and particularly the

weaknesses in the program as it now stands. Our description will con-

centrate on the role that FORM plays in obtaining a solution.

This problem is not a simple one. So it will pass to stage 2, where

FORM will examine it. It turns out that FORM will arrive at the same

hypothesis regardless of whether it examines the numerator or denominator

first, but it will he more instructive to see how it operates on the numer-

ator. First, FORM will note the square-root (more precisely, the exponent

1

of 3). Since the base is not rational, which would indicate that Methods

3, 4, or 5 might be applicable, the root is ignored and attention is

focused on the base A 2 + B2sin2x. In this sum, the constant term A 2 is

encountered, and it yields no clue. The factor B 2 is likewise a constant

and yields no clue. This leaves the factor sin2x. The exponent of 2 is

not interesting. However, the base sin(x) does yield a clue since it is

a trigonometric function with a linear argument. FORM will, therefore,

call Method 6 in order to test the hpyothesis that the expression is an

elementary function of trigonometric functions of x. Method 6 determines

that the hypothesis is valid and will call SIN after making the substitution

y = cos x. The subproblem thus generated for SIN is

fVA z + B2(I - y2)
i - y2 dy

As before, this is not a simple problem and again FOl_l is called in

order to generate an hypothesis, Interest will quickly focus on the square-

I00

root in the numerator. Though the base is a rational function, none of

the clues in FORM appear to apply. As described in the discussion above,

FORM will attempt to determine whether an expansion of the base is possible.

Expansion is, of course, possible and yields the base A 2 + B 2 - B2y 2 which

matches the pattern used as a clue for Method 5. Method 5 is now called

in order to determine whether an arctrigonometrlc substitution is possible

in the revised problem which is

- /A 2 + B 2 - BZyZ2 dz .
1 - y

Method 5 first validates the hypothesis. In order to determine which

substitution is appropriate, the routine decides that A2 + B 2 is positive

and that -B 2 is negative in the manner described in the discussion of

this method above. Method 5 will now make the substitution

By

z = arcsin_

which is followed by a call to SIN with the subproblem

A2÷ 2÷ 2)cos zdz

1 - B---_/----sin2z

Once again the subproblem is not simple and FORM is asked to examine

2
it. In the integrand only two factors are interesting, cos z and

A 2 + B 2 . 2 .-i

(i - B---_----sln z) . Whichever FORM will be asked to examine first,

the conclusion will be the same--a hypothesis that the integrand is an

elementary function of trigonometric functions.

Method 6 will verify the hypothesis that only trigonometric functions

are present and will make the substitution w = tan(z). This will result

in yet another call to SIN with the subproblem

i A 2 + B 2

_- A z + B _ w z
?_ (1 + w2)2 (1 -_--_---1 +--_-j)

dw

I01

This is a rational functi_ and FORM will find no clue in this case.

Since FORM also did not find any clue to reject the possibility that

Method 2 (substitution for an integer power) is applicable, that method

is called next. Method 2 cabot make a substitution, but will call

Method 8 (rational) to solve this problem.

The rational functi_ package will obtain this subproblem thr_gh

the chaining process described above under Method 8. First, it will

transfo_ it by rationalization into a problem of the fom given below

-B(A2 + B2) dw

(i + w2)(B 2 - A2w 2)

Then factorization and partial fraction decomposition will result in

Straight fo_ard integration will now yield the integral

-B arctan w + ½A lOge(AW - B) - ½A loge(AW + B)

This result will be sent back to S_ for the arduous backward sub-

stitution: The first substitution is w = tan z which yields

-Bz+ _A log e(A tan z - B) - ½A log (A tan z + B)
B e

The second substitution is z = arcsin 4_ y. This results in

)/_ y +_A £Oge_ L BL y2 - B

102

C

Note that tan arcsin C is transfo_ed into/_---_-_

The final substitution is y = cos x; this in turn yields

/ _ B cos x B \

-Barcsin'/_r_-_cosx _ _A_Oge[_ 2 -

r11 | A_
- _A iOge_ L g 2 2 + BI

_ -rrr_cos x /
This is the result that S_ retu_s for the original problem. S_

does not simplify its results by rationalizing them or by combining log-

arithmic tems. This is certainly a drawback in this problem. Such

si_lifying transformations would result in the answer

B !A cos x +/A 2 + B z sin2x-B arcsin /A--2---+-_ cos x - ½A log e A cos x - JAZ + B z sinZx

This result is to he compared with the answer in the table (Petit

Bois, p. 138). That result is
B

B arccos (¢_2--_--_ c°s x) - A iOge(A cot x +_A2 csc2x + B)

In more familiar te_s, the table's answer is

-B arcsin _ cos x - A log e A cos x +/AZsin x+B2 sinZx

This answer differs by a constant from the answer derived by SIN.

Although we can only guess at the method that the table's compiler

used, we can arrive at some conclusions regarding weaknesses in S_'s

method of solution.

Let us consider the first subproblem after the modification _de to

it by FORM.

- /A z +iBZ - BZy 2_ yZ dy

103

Rewritethis as
_ (A 2 + B 2 _ B2¥ 2)

(i - y2) CAr + B2 _ BZyZ dy

The transformation made above is a standard one in dealing with

algebraic integrands. The integral above, after division, becomes

v/'Az + B z - BZyZ

Multiplying through we obtain two subproblems which together are

simpler to solve than the combined problem. SIN, by not bringing the

square-root to the denominator, unnecessarily complicates the work of

the rational function package. This is certainly one of its weaknesses

in dealing with algebraic integrands.

SAINT and SIN solutions of the same, problem

As a further comparison of SAINT and SIN, we shall indicate how

both operate on the problem
4

_(i - x Z) /z dxx

This problem was chosen because it is discussed extensively in Slagle's

thesis.

In SIN, after determining that the problem is not simple, the factor

(i - x2) -(5/2) acts as a clue in FORM and generates a call to Method 5

which validates the hypothesis that an arctrigonometric substitution is

possible. This method generates the subproblem

_sin4v

J_dy

after making the substitution y = arcsin x.

Again, this is not a simple problem and this time sin(y) will act

104

asa cluefor thehypothesisthat onlytrigonometricfunctionsarepresent.

Method6validatesthis hypothesisandgeneratesthesubproblem
z 4

after making the substitution z = tan y.

This subproblem is rational and FORM finds no local clue. Method 2

is called and is ineffective. Method 8 (rational) is called and the rational

function package returns the expression

3

z__ _ z + arctan z
3

as the integral.

Backward substitution yields

3
tanv

3 - tan y + y

and finally we obtain the integral

i I- . -
\'--'--'--" -(1_____)1/2+ arcsin x

x x

In SAINT, the solution of

X

(I - xZ) D/2 dx

proceeds roughly as follows.

In this problem y = arcsin x is substituted yielding

I) _dy

as in SIN.

Subproblem I is transformed into

II) _tan4y dy

and into

III) _cot4y dy

both of which will now be added to the subproblem tree.
1

Finally, z = tan _y

105

transformssubproblemI into
Z

Iv) 32 (I +z z)(1 - zz)4dz

which is transformed by IMSI_N into

Z

V) 32 (1 + z2)(1 - z2) 4 dz

No more transformations are possible on subproblem I, so transfor-

mation will be attempted on subproblems II, III, and V.

Subproblem II is transformed by z = tan y into

z4

IMSLN then performs the polynomial division and obtains

[Z 2 1)Vll) j(-i + +_ dz

From VII we obtain

VIII) _-dz,

IX) _z2dz, and

x,
Subproblems Vlll and IX are solved by the table look up in IMSLN.

This leaves II, III, V and X.

III can be transformed by z = cot y, into

J" -t
Xl) z4(l + z2) dz

and IMSLN will convert it to

_z 41
XII) - (i + z2) dz

By now only subproblems V, X, and XII remain to be considered. The

transformation w = arctan z on subproblem X yields

XlII) J_dw

106

which IMSLN solves by the table look up. Now IMSLN realizes that sub-

problem VII has been completely solved and by backward substitution can

obtain the final result

i 3

_tan arcsin x - tan arcqin x + arcsin x

We should note in the solution methods how SAINT keeps several

options to the particular path to be followed in obtaining the answer.

This is particularly noticeable in subproblem I which generates II, III,

and IV. Only one of those three subproblems need be solved. SIN will

generate only one subproblem, and will commit itself to using it. Of

i

these subproblems only IV can truly be faulted. The tan _ x transformation

is generally to be eschewed if any other transformation is possible. How-

ever, the lack of communication between SAINT's heuristics make such a

principle difficult to implement.

Furthermore, it appears that subproblem XIII should logically follow

X. However_ the cost of obtaining the character of subproblem X in SAINT

forced the particular order of events to be followed. A mechanism like

FORM would have simplified this situation tremendously.

CHAPTER5

THEEDGE HEURISTIC

In this chapter we present the concepts underlying the Edge

heuristic. The heuristic guesses the form of the integral and then

attempts to obtain values for undetermined coefficients in that

form. A program called Edge, which implements some of the ideas

behind the Edge heuristic is described. The theoretical results

related to this approach to integration are discussed.

Let us suppose that we are given an integrand which is in

the form of a product. Then we can usually determine quite easily

which factor in the product is a singular or outstandin_ factor

in the sense that it is not contained in the other factors or their

derivatives, nor can it be derived from the other factors or their

2
derivatives through rational operations. In xe x , the factor e x2

is outstanding since x is contained in the derivative of this factor.

The outstanding factor in x31_-x 2_ is the factor V_ "_. However,

there may be several such outstanding factors as in sinxe x where

both sinx and e x are not derivable from one another. In such a

case we shall say that the first factor in a right to left scan of

the expression is the outstanding factor. Moreover, in cases of

functions such as sin(x)cos(x) no factor is outstanding. Here we

shall choose the first factor on the right.

107

108

Giventhatwehavedecidedonanoutstandingfactorin the

integrand,wecanfrequentlymakeaneducatedguessregardingthe

formof theintegral,assuming,of course,that the integralcanbe

expressedin finite terms.

Supposetheintegralf(x) hasanoutstandingfactorof the
formeg(x), say,f(x) = h(x)eg(x) thenwecanguessthat

f(x)dxis of theform

a(x)eg(x)+ b(x)=_ f(x)dx=_ h(x)eg(X)dx

wherea(x), b(x) areundeterminedfunctionsof x, andwhere
a(x)will not involveeg(x).

Certainly7f(x)dxmustcontaineg(x)sinceonecannotother-

wiseobtainsucha functionthroughdifferentiation. If _f(x)dx
hasa nonlinearoccurrenceof eg(x) thensowill its derivative,

but this nonlinearoccurrencewill notcancelin f(x).

Giventheabovechoicefor _f(x)dx, thenbydifferentiation
weobtain

a(x)eg(X)g'(x) + a'(x)eg(x)+ b'(x) = f(x) = eg(X)h(x)

A simplechoicefor thevalueof a(x)canbeobtainedbyrequiring
that thefirst coefficientof eg(x)ontheleft beequalto the

coefficientof eg.(x)in f. Usingthis choiceweobtain

f(x) h(x)
a(x)= eg(X)g,(_ g'(x)

109

The value of b(x) is obtained in a subproblem.

b(x) = ,F-a'(x)eg(X)dx

Hopefully, the choice of a(x) made above will yield a simpler

integration problem for the determination of b(x) than the original

problem. Let us consider a simple example using this guessing

procedure.

f(x) = xe x

a(x)eX+ b(x) = ff(x)dx

a(x)e x + a'(x)e x + b'(x) = xe x

x
xe

a _x) = -- = X
x

e

a'(x) = 1

b(x) = ,F-l.eXdx = ,F-eXdx

The subproblem for b(x) is certainly simpler than the original

problem. It will be instructive to consider how the method out-

lined above will handle such a problem. Below we shall usually

ignore the functional characterization of a(x) and b(x).

b = _-eXdx

x

ale + b I = b

x , x ' = b' = -ex
ale + ale + b I

ii0

x
-e

a I = -_ = -Ie

' =0
a I

b[= _ -0.eXdx = _0 dx = constant

b = aleX + b I = -e x + constant

Finally,

f(x)dx = xe x ex + constant

Let us now consider another example using this procedure.

2 sin x2
f(x) = x cos x e

2
sin x

The outstanding factor in f(x) is e

2
sin x

me + b = _f(x)dx

sin x2 x2 a,eSin x2ae cos 2x + + b' = x cos x2e sin x2

a=_

a I = 0

b f = 0, b = constant

2

f(x dx = le sin x + constant
j - -

iii

The first of the two problems above is usually solved by In-

tegration-by-parts. However, that method requires an integration

step (i.e., _eXdx) which we did not perform. Furthermore, the

integration by parts method is inapplicable in the second problem

above. The latter problem is handled by the Derivative-divides

method such as is used in SIN's first stage. 8o the analysis per-

formed by the Edge heuristic and in particular the analysis of

Edge that we have been presenting is different from either of these

two general methods of integration.

An analysis which is similar, but more complex than the one

made by Edge is employed by Method 7 of SIN's second stage. Let

us consider the manner in which the method proceeds in light of the

discussion above.

We recall that Method 7 deals with integrands of the form

R(x)e P(x) where R is rational and P is a polynomial in x.

An example solved by this method is

f(x) = _x2+l)e x2

Edge would in this case guess

a(x)eX2+b (x) = _f (x)dx

and

2x2+i 2x2+i

a (X) = (X--_)' 2X

112

Method7 is superior in this case in that it considers the

R(x) factor term by term. Thus, it would guess

2x 2 2x 2

a (_) = (x'-f'_)' = 2--V = x

It turns out that this is the correct value for a(x) since

x 2

the integral is exactly xe

On a more complex problem such as

2x 6 + 5x 4 + x 3 + 4x 2 + i x 2
e

(x2+l) 2

Method 7 would proceed by first letting

a(x)
2x 6 x 5

(x2)'(x2+l) 2 (x2+l) 2

The subproblem it generates is

4x 4 + x 3 + 5 4

x2+l

(x+l) 2

2
x

e

Now it lets

4x 4 2x 3

"l =o4'(;+1> 71JV , etc.

113

Finally, theresult is

5x + 2x3+_x2 + x +½ e x2

(x2+l) 2

or

2x 3 + 2x + I x 2
e

2 (x2+l)

Thus, we see that although the heuristic of guessing the form

of the integral is correct in the two examples above, the particu-

lar mechanism for guessing the values of the undetermined coefficients

which is employed in Edge is not sufficiently powerful. We shall

now indicate two other difficulties with the analysis of Edge

described above.

Let us recall that Method I of SIN's second stage handles inte-

grands of the form Elem(eX). This method substitutes y=e x. In

the case of rational functions of exponentials this substitution yields

a rational function. Thus, for example,

f(x) = (eX+l)e 2x

becomes

(y+l)y

after making the substitution. The rational function package will

expand this integrand and integrate the resulting quadratic in y.

Edge would guess the form of the integral without making a corres-

ponding expansion. This leads to an incorrect guess of the form

114

since the two factors in f(x) are closely related. Had Edge ex-

panded the integrand and integrated the terms separately, it

would have easily obtained the integral of f(x).

Another difficulty with the manner in which Edge guesses the

form of an integral is shown in

1 -x
f(x) _ e

eX+l

Method I of SIN's second stage would yield a rational function

which would be factored and expanded in partial fractions by the

rational function package. Here again the two factors f(x) are

closely related and thus the guess of the form of the integral

made by Edge and the resulting guesses of the coefficients will

fail to yield the integral. A partial fraction expansion is re-

quired if the integrand is a rational function of related terms.

While keeping these weaknesses of Edge in mind, we shall con-

tinue to consider how the guessing heuristic operates on outstanding

factors of different forms.

Let us suppose that

f(x) = h(x) log(g(x))

and that the logarithmic factor is the outstanding factor in f(x).

A good guess of the form _f(x)dx, if it exists, is

clog 2(g(x)) + a(x)log(g(x)) + b(x) _ _f(x)dx

where c is a constant and a(x) does not involve log(g(x)).

115

Thelog2 termis necessary(e.g.,

coefficientis onlya constant.
fromabovewouldcontaina log2

f (x).

Differentiatingweobtain

or

f(x) =i/x logx),but its
Otherwisethederivativeof the

termwhichwouldnotcancelin

2c logg(x)+ agl(x) + a'Iog g(x) + b' = h(x)log g(x)
g(x)

(2c + a')log g(x) + a_--_,x, + b' = h(x) log g(x)
g Ix)

In the above we grouped the terms involving the outstanding

factor log g(x). We note two differences from the exponential case.

First there is the constant c which did not arise before. Then

the coefficient of the log term is a' instead of a. We can solve

for a(x) by using the relationship

a' = h(x) - 2c gI(x)
g(x)

a = _h(x)dx - 2c log g(x)

We now use the fact that a(x) is independent of log g(x) in

order to obtain a value for c. That is_ if _h(x)dx has a term in-

volving log g(x), the c is chosen so as to cancel that term.

Otherwise, we chose c=O. The value of b' is determined by the

relationship

116

b! _-a_L--N_LL-g(x)

Letusconsideranexample.

f(x) = (x + i/x)log g(x)

c log2x+ a logx + b =_ (x+i/x)logx dx

(2c/x + a')log x + a/x+ b' = (x + i/x)log x

a = _(x+ i/x)dx - 2c logx = 1/2x2 + logx - 2 c logx

2c= i, c = 1/2, a = 1/2x2

b' =-a/x =-1/2 x
2b =-1/4x

_(x+ i/x)log x ex= 1/21og2x+ 1/2x21ogx - 1/4x2

It shouldbenotedthatS(x+ i/x)dxcan,of course,alsobe
obtainedbya guessof the integral.

Theguessfor the logarithmiccasegeneralizeswhenf(x) is
of theform

f(x) =h(x) logng(x),n> 0

In this casewecanguess

c logn+Ig(x)+ a logng(x)+ b =Sh(x)logng(x)dx

witha,b,cdeterminedusingthesamemethodasabove.

117

Let us consider how we can capitalize on our experience of the

types of outstanding factors dealt with above. Suppose f(x) is of

the form

factor.

f(x): h(x) , where _ is the outstanding

I + g2(x) i + g (x)

The argument now proceeds as follows: One could arrive at a

i
factor by two routes which do not involve complex con-

I + g2(x)

stants:

a) log(l + g2(x))

b) arctan g(x).

In either case the coefficients must be constants since if they were

not the derivatives would contain terms more complex than found in

the integrand. Thus the guess is

c log(l + g2(x)) + d arctan g(x) = If(x)dx

+ d_' = h(x)

1 + g2 1 + g2 1 + g2

(2 gc + d) g' = h(x) where c, d are constants.

Consider f(x) - x
4

I + x

(2x2c + d)2x = x

2x2_+d : !
2

c = 0, d = I
2

_f(x)dx I x2
=_arctan

We should note that our guess fails in such cases as --

in which division must be attempted first, or in the case of

i 2
which is equivalent to cos x.

i + tan2x

5
X

4
l+x

110

In order to contrast the Edge heuristic approach with that used

in Stage 2 of SIN, let us consider functions of the form

f(x) =' h(x)

g2(x))n/2 , n a positive integer(i

An educated guess for the form of the integral of f(x) is

a + b = jf(x)dx, unless n = +i

(I - g2(x))n/2
i

If n = +I, then we shall also consider the possibility of a

c arcsin(g(x)) term, where c is a constant.

An example we considered in Chapter 4 is

4
X

f(x)
(I - x2) 5/2

a x 4

(i - Jl 3/2 + b = _(I - x2) 512 dx

a(_) (-2x) a' x4

(I x2) 5/2 + x2) 3/2 + b'- (i - (I - x2) 5/2

4 3
x x

a = ------
3x 3

2
a I =x

2
-X

bl -

(I - x2) 3/2

Now we shall generate a suhproblem.

al =_lJ(- 2(l - x2) I/2 + bl -Xx2) 3/2 dx

a1(-i/2)(-2x) a{ -x2
(i - x2) 3/2 + 1/2 + '(I - x 2) bl (I - x2) 3/2

2
-X

a. =-- = -x
£ X

t = -i
a I

119

i
! _-

b I
(I - x2) I/2

In this case we shall guess

a2(l - x2) I/2 + c arcsin x = I(l - x2)'i/2dx

a2 (i/2) (-2x) c I

(I - x2) I/2 +(I - x2) I/2 (i - x2) I/2

-xa 2 + c = i

c = I

a 2 =0

The final result is

4 3x x _ x2).l/2
x2)5/2 dx =_"- (1 - x2, "3/2 _ x(1 - + aresin x(1

We should like to mention how Edge handles trigonometric functions.

For outstanding factors of the form sin(g(x)) it guesses cos(g(x)) and

it guesses cos(g(x)) for outstanding factors of the form sin(g(x)).

However, this manner of dealing with trigonometric functions is not

necessarily the best one. Edge should in some cases consider the com-

plex exponential form of the trigonometric functions. In this way

Jsinnx dx can be found easily for integral values of n after expanding

the complex exponential form of the integrand. By keeping the trigo-

nometric form Edge is forced to deal with methods such as "solution by

t

• - l! |transposltlon which occurs in _sin x eXdx when one of the subproblems

is I-sin x eXdx.

We have indicated above some examples in which Edge fails to

1 ,')/_

make a good guess for the form of the integral or the values of the

undetermined coefficients in the form. Thus, it is necessary to

determine whether Edge is progressing toward a solution. If the

outstanding term involves an exponent and the absolute value of the

exponent is decreasing, the routine thinks that it is making progress.

The same is true if another factor in the integrand is exponentiated

and its exponent is decreasing while the outstanding factor remains

the same. The program is certainly not progressing if it obtains

a subproblem which is exactly the same as some previous subproblem,

though a solution by transposition is attempted if a subproblem is

a constant multiple other than one of some previous subproblem.

In the above we have indicated some cased in which the form has co-

efficients which were constrained to be constants. The current

version of Edge handles these cases by attempting a guess which ig-

nores a term (u_ually the one with a constant multiple). If that

guess fails to yield the integral using the progress information

outlined above, the program backs up and introduces a new term in

the form while eliminating another term. In this manner Edge per-

forms a depth first search.

Below we would like to indicate the theoretical results which

underlie the Edge heuristic.

Historically, the quest for results regarding the form of an

integral goes back to the early nineteenth century. Laplace con-

jectured that the integral of an algebraic function (y is algebraic

121

in x if P(x,y) = 0 where P is a polynomial with constant coefficients)

need contain only those algebraic functions which are present in the

integrand. This conjecture was proved by Abel. Liouville examined the

form of the integral of an elementary function in a series of papers in

the 1830's. Before we present the statement of Liouville's main theorem,

we shall need some preliminary considerations. An important feature of

Liouville's theory of integration is a hierarchy of elementary functions.

In level 0 of this hierarchy are the algebraic functions. The monomial

of level 0 is x. A monomial of level i + I is a function represented by

e y or log y, where y is a function of level i and where the monomial has

no representation which is of lower level than i + I. Level i + I also

contains all functions which are algebraic combinations of monomials of

level i + I with functions of lower levels provided again that those

2
x

functions have no representation of lower level. Thus, xe is of level

i and eXe ex + log(l - ix 2) is of level 2. We should note that this

hierarchy includes all trigonometric and arctrigonometric functions by

using their complex exponential and logarithmic forms in order to clas-

sify them.

Given a representation of an elementary function one can list

the monomials and algebraic functions of these monomials which were

combined to form the function. Among the monomials and the algebraic

functions there will he some which are of the highest level. Choose

one such function and call it the principal function. Thus, the

122

original functionis a rationalcombinationof theprincipal

functionswith functionsof equalor lowerlevel. Theprincipal
2 x2

functionin xex is e andtheprincipalfunctionin

eX+l is ex. It is theconceptof a principalfunctionwhichwe
e2X+3ex

werestriving for whenwedefinedtheconceptof anoutstanding

factorin anintegrand.Wenotedabovesomeof thedifficulties

thatoneencountersin makinganeducatedguessfor theformof the

integralwhenusingonlythenotionof anoutstandingfactor. The

principalfunctionconceptsurmountsthesedifficulties.
Wearenowin a positionto askwhetherthereareanymore

monomialsandalgebraicfunctionsin the integralof a function
thanin thefunctionitself. TheanswerprovidedbyLiouville's

generaltheoremis that exceptfor logarithmicextensionsthereare
none.Liouville's theoremstatesthat

n
f(x)dx= vo(x)+ E c. logv.i=l i i

wheretheci's arecomplexconstantsandthevi are rational
functionsin themonomialsandalgebraicfunctionsof thesewhich

appearin f [54].

Liouville's theoremitself givesa strongrationaleto theEdge

heuristicsinceit makesstrongrestrictionsonthepossibleforms

123

of the integral. Recently,andindependentlyof ourworkonEdge,

Risch[53]hasstrengthenedtheLiouville theorembyshowingthat

theconstantsc. needonlybealgebraicoverthefield of constantsl
generatedbytheconstantsin f(x) with the groundfield of the

rationalnumbers.Rischhasalsogivena decisionprocedurefor

thosefunctionsobtainedwithoutusinganyalgebraicoperations

otherthanrationaloperations.Hismethodis similarto the

oneemployedin Edgein that it relies onknowingthepossibleform

of the integral. However,it is superiorto Edgein themannerin
whichit obtainstheundeterminedcoefficientsandin its useof

partial fractiondecompositionwith respectto theprincipal

functionin the integrand.Whenalgebraicoperationsareallowed

in the integral,Rischbelievesthat the integrationproblemmay

in generalberecursivelyunsolvable.(SeeAppendixBwherethe

integrationproblemis shownto beunsolvableusingadifferent

formulationthanRisch's._However,heis optimisticaboutintegrands

whicharealgebraicfunctionsof level0 in ourhierarchy.

Webelievethatmethodswhichrely onguessingtheformof

the integralsuchasEdgeor onesbasedonRisch'salgorithmwill in

thenearfutureprovideuswithverypowerfulintegrationprograms.

However,theamountof machinerythat theycall intoplayandtheir

useof radical transformationssuchasthecomplexexponentialform

of thetrigonometricfunctionsindicatethat thosemethodsarenot

to beappliedwhenmorespecificandpresumablymoreefficient
methodsareavailable.

Chapter6

SOLUTIONOFORDINARYDIFFERENTIALEQUATIONS

Asa first approximationonemightattemptto treat thepro-
blemof solvingordinarydifferential equationsbyusinga similar

strategyto theoneusedin SINfor integrationproblems.Letus

recall that SINuseda threestageapproach.First it attempted

to solvetheproblemusingsimplemethods.NexttheFORMroutine

attemptedto uselocalcluesto determinewhichoneof a specific

setof methodswasapplicableto theproblem.Finally theEdge

routineemployeda moregeneralmethodof solution. In this

chapterweshall considerhowsucha strategywouldfare in the
problemdomainof first order,first degreeordinarydifferential

equations(i.e. P(x,y)y'+Q(x,y)=0).Weshall indicatetheapproach

that wasfinally takenanddescribethemethodsof solutionwhich

wereprogrammed.

Thereappearsto begeneralagreementin the texts of ordin-

ary differential equations regarding the elementary forms of dif-

ferential equations. Linear, exact and separable equations seem

to constitute the universal choice as elementary forms. They are,

respectively, of the form f(x)y'÷g(x)y+h(x) =0, P(x,y)dx+Q(x,y)dy=0,

where 5P _Q, and A(x)B(y)dx+C(x)D(y)dy=0. These forms are relative-

_x
ly easy to recognize, and immediately reduce to integration problems.

We shall adopt the usual convention that a reduction of a differ-

ential equation to one or more integration problems constitutes a

solution of the equation even _f the expressions to be integrated

cannot be integrated in finite terms. Functions which can be ex-

124

125

l)

2)

3)

4)

5)

pressed in terms of elementary functions and integrals of elemen-

tary function are called Liouville functions. Due to the above-

stated properties of linear, exact, and separable equations, the

set of methods which determine whether the equation matches one

of the forms constitute a reasonable analogue to SIN's first stage.

When we consider finding an analogue to the FORM routine of

SIN, we immediately arrive at difficulities. It is rare that one

can make a slight change to a differential equation and still be

able to use the same method of solution, let alone obtain a sim-

ilar solution. Let us consider how the method of solution changes

as we modify the five equations below. The methods of solution

used (i.e., linear, exact, homogeneous, Bernoulli, and linear co-

efficients_ will be described later.

2xy' + y+x+l=0

linear

2xy'+y(y+x+l)=0

Bernoulli

(2x+y) y '+y+x+l=0

linear coefficients

x (x+y) y '+y (y+2x) =0

homogeneous

x (x+2 y) y' +y (y+Zx) +I =0

exact

It should be noted that none of the methods mentioned above

is applicable to any of the other four problems. The situation is

126

evenmoreseriouswhenwenotethat equation6 is not integrable

in termsof Liouville functions,butequation7, whichvaries

fromequation6byonlytheadditionof theconstanti, does
possessa Liouville solution(seeRitt [54] P.73).

6) x2y'+x2(y2-1)-2=0

7) x2y'+x2(y2-1)-l=O

Sincetheequationsaboveappearquite similar,anytestbased

onlocalcluesonlyis goingto farequitebadly. Thusthepos-

sibility of implementingananalogueto SIN'sFORMroutinedoes

notappearverypromising.Onecouldof course,useglobalclues

(suchasthenumberof occurrencesof x andy in thecoefficient

of y') to concludethat certainmethodsare inapplicable(for ex-
ample,the linearmethodis inapplicableif thereareanyoccur-

rencesof y in thecoefficientof y'). However,this approachis

not likely to giveusa greatincreasein efficiency.

Onthebasisof thedifficulty just noted,onewouldsuppose

that a practicalgeneralmethodfor solvingfirst order,f_rst

degreeordinarydifferential equationsis not likely to exist.
Surprisingly,a generalmethoddoesexist. It is knownasthe

multiplier method.It canbeshownthat if a Liouv_llesolution

exists, thentherealsoexistsa Liouville functionu(x,y),which

canbeusedto multiplybothsidesof theequationandobtainan

exactdifferential equationandthusanimmediatesolution. That

is, givenP(x,y)dx+Q(x,y)dy=0,thenuPdx+uQdy=0satisfies____(uP)=_._(uQ).
_y

There is, however, a slight catch in the multiplier method - it is

very hard to find an appropriate multiplier except in special

127

cases. In fact_ several texts caution their readers against trying

to consider finding multipliers to differential equations. The

Liouville theory (see Chapter 5) yields a form that an elementary

solution to a first order differential equation must satisfy. Now-

ever it does not appear likely that one could write a method like

Edge which would exploit this information_ except in special cases.

Negative results such as those in Appendix B appear to dampen the

hope that one could find a general method for solving differential

equations.

We thus conclude that finding an analogue to SIN's strategy

in the domain of differential equations is quite difficult if not

impossible. We can_ however_ decrease our expectations and follow

the traditional technique given in texts on differential equations.

That is we can determine if the problem is solvable by one of a

set of special methods by examining the applicability of the methods

one at a time° It is this approach which was implemented. We were

reduced to a search for a method because of our inability to either

localize the problem or to find a simple model for it. The cru-

cial role of constants in determining a solution frustrates even

the most primitive simplifying considerations. There is one con-

solation in the approach taken, and that is that once we find a

method which is applicable it is either immediately reducible to

integration problems or reduces to simple problems (i.e.j linearj

exact_ or separable) in one or at most two steps. Furthermorej

these steps are known in advance in most cases.

Eight methods of solution for first orderj first degree

differential equations were coded. These include most of the

12g

I

II

methodsfor solvingfirst orderequationstaughtin anintroductory
courseonordinary differential equations. As stated above, the

methods are examined in turn in order to determine if they are

applicable. The simple methods are attempted first. These will

all call SIN whenever they apply in order to solve some integra-

tion problems. The five other methods will generate subproblems

which are usually either linear, exact or separable.

The conventions for stating the problem to the machine are

the ones used in the text books or the tables. When the dependent

variable is xj and the independent variable is y_ the problem may

be stated in either form I or II:

P(x,y)y'+Q(x,y)

P (x, y) dx_Q (x, y) dy

It is assumed that the expression given is to be equated to

O. The result, if found_ will be stated in the form

f(x,y)=Co ,

where Co is a constant of integration. As will be seen, no attempt

is currently made to solve for y or to perform other simplifications

such as eliminating logs in the resulting expression.

Top level control resides in a routine called SOLDIER (SOLution

of DF_fferential Equation Routine). SOLDIER will translate the pro-

blem statement into the form (either I or II) desired by the par-

ticular method. It will be noted that books tend to state a problem

applicable to a given method in only one of the two forms (e.g.j

linear equations are usually in form Ij and exact in form II).

No attempt was made to use this fact as a clue to a solution.

We now shall proceed in describing the methods.

129

Fo____

Method i LINEAR

f(x)y'+g(x)y+h(x)=0

Procedure

Let Pfx %g(x/
" "-f(x) '

The solution is

ye 5Pdx + fQ

Note%

Q (x)_

Ie_P(x)dx I dx = Co

The recognition of this form is done by a SCHAT_HEN pattern.

Since equations of the form f(x)y'+g(x)[h(x)y+k(x)]=0 will not be

recognized as linear by SCHAT_HEN using the pattern given above,

expansion is attempted as a heuristic aid to recognizing forms.

Expansion is, however, attempted only when a single occurrence of

y appears in the equation. Thus f(x)y'+g(x)y+h(x)[y+k(x)]=O is not

expanded and is not recognized as a linear differential equation.

i) y'+y+_=0

becomes

yeX+fxeXdx=Co

Thus solution is

yeX+xe x- eX=co

2) xy'+xy+l=-0

results in yeX+I ex dx = CO

x

Method 2 SEPARABLE

FORM A (x) B (y) dx+C (g) D (y) dy= 0

130

Procedure The solution is

dx dy --co
c(x) _'B(y)

Note__.___s_

No attempt is made to recognize _is form except through

SCHATCHEN's matching techniques. Thus no factorization of _e

equations is atter_pted. That is _e factorization must be explicit

al_ough several factors may involve just y or just x.

I) x(y2-1)dx- y (x2-1)d_O

becomes

Thus _e solution is

1/2 log (x2-1) - 1/2 log (y2-1)=Co

This answer is normally simplified on tables to become

x2-1 =Co or (x2-1)=Co(y2-1). As stated above no attempt is

y2.1

current_ made to perform such simplifications.

x
2) e siny y'+xcosy=O

becomes

/sinYdy +/xe "x dx=Co

./ cosy

or

-x -x
-log cosy - xe -e =Co

The transformation of this problem to the dx, dy form is

performed by SOLDIER.

Method 3) Exact - Multipliers

Exac_ FO_______ P(x,y)dx + Q(x,y)dy=O

131

The method is applicable whenever

_=_Q
bY bx

The answer is

Since this method is closely related in form requirements

and solution method to certain special cases of the multiplier

method, these cases are considered here.

a) ZE -_ - -_
= h(x), i.e.,the quotient is just a function of

Q efh(x)dxx_ then the multiplier is

Procedure Let P (x_y)= P(x,y)*multiplier, Q(x,y)= Q(x,y)*multiplier

and Q are guaranteed to satisfy

bY b x

The solution is obtained using the procedure ef equation I

above with PjQ replaced by P and Q, respectively.

b) If _Q - _P , that is the quotient is a function of y only,

= k(y)

then

yk(y)dy is a multiplier. Proceed as in step a).

c) If bP = - _Q and _P = bQ
bY bx 3x bY

I

then the multiplier is p2+o 2 . Proceed as in step a)

Notes

SCHATCHEN is used to perform the matching required in testing

to determine if _P equals bQ. Clearly a matching program such as

b x bY

Martin's [37] would be preferable in this case since no pattern

matching is necessary, but only a match for equivalence.

132

ThedivisionstepsemployonlySCHVUOS'slimitedsimpli-
ficationmethodsfor quotients.Thusnofactorizationis

attempted.At presentthereexistsnosimplificationprogram

whichcansimplifyquotientswell. Forexample

e2X+2eX+l

eX+l

is not simplified to eX+l by any reported simplification program.

Another approach to determin_ the applicability of the first

three multiplier cases is to differentiate the quotient with respect

to y in the first case and with respect to x in the second case.

This reduces the recognition problem to a match for equivalence to

0. In this manner we avoid placing constraints on the simplifica-

tion program for determining the applicability of the method. How-

ever this technique does not yield the desired value of the quotients.

There exist many other special cases for the multiplier. In

fact the origin of Lie Groups was motivated by considerations

regarding the families of differential equations which are solved

by particular multipliers.

i) (4xBy- i2x2y 2+5x2+ 3x) y '+6x2y 2-8xy3+ 10xy+3Y= 0

Solution is

32.23 2
x y -4x y +5x y+3xy=Co

2) (2xy+Sx_l) y'+y2= 0

Solution is

 5/y + Je'5/Ydy Coxy =

Method 4 Bernoulli

133

TORM

Procedure

f(x)y'+g(x)y + h(x)yn=o, where n is a constant, n 4 1

Substitute u(x)=y
l-n

in order to obtain the linear equa-

transformed into the linear equation

y' + (x-2) y + i

(x-i) x-T_x,l)x

3xy' - 3xy41OgeX - y = 0

is transformed into

=0

y' + X + 3 logeX = 0
x

Method 5 Homogeneous

FORM P (x,y)dx + Q(x,y)dy = 0

where P and Q are homogeneous functions in x and y of some

degree, n, say.

Procedure The substitution u(x) = _ is made. After factoring
x

n
x from the equation_ one obtains an equation with the variables

separable (Method 2).

Notes

This is a common form for a differential equation. It is

2)

2
l) x2(x-l)y ' = y - x(x-2)'y=O

tion

f(x) u'+(l-n) g(x)u+ (l-n)h(x)=0

No_es

The form of the equation is tested by SC_IATCHEN. As in the

linear case expansion will be attempted to aid the pattern match,

but only when there are exactly two occurrences of y in the equation.

i34

a subcase of method 8, but is given special treatment here because

of the frequency and ease of recognition of this form.

The factorization of x n from the equation must, in general,

be performed in order to have the result recognized as separable.

The recognition of homogeneity and factorization are performed by

SCHATCHEN and SCHVUOS and thus are not unusually powerful. For

example _ y'+y=-0 is not recognized as homogeneous.

x

Examples

l)

2)

3x2y ' . 7y 2 - 3xy-x2=0

solution is

log x 3
e - -- arctanU'_ y =Co

J7 x

2x(y3+5x 2) y'+y3-x2y =0

solution ms

logeX + i0 log y - 2 loge(3+y2) = Co
9 ex "_

x

Method 6 Almost Linear

FORM f(x)g(y) y' + h(x,y) = 0

where

h(x,y) = k(x) l(y)+m(x)

and

l' (y)= g(y)

Procedure

Substitute u(x) = l(y) resulting in the linear equation

f(x)u' + k(x) u+m(x)=O

Notes

This is a method which is rarely indicated in the texts.

Zxa_les

l) _yy'+ 2_2+_o

2
substitution is u(x)=y

y ie id ing

i ,

_xu + 2xu+l=O
1

2) x2cosy y' + siny + e x = 0

substitution u = siny

yields i

x
x2u ' + u + e = 0

Method 7 Linear coefficients.

where a_b#cja'_bW,c '

are constants and

ab' - a'b _ 0

f(x,y).

i) (4y+l ix- ii)_ '-25y- 8x+62= 0

answer is

i i log e 1+2 Y'_

+ 3/2 log e 4 + __- _ _o

/

Procedure

Substitute

b'c - bc' yt _ ac' - a'cx* = x - a'b - ab' Y* = a'b _7

and obtain a homogeneous problem (method 5).

Notes

Recognition is based on matching

A(ax+by+c) n (a'x+b'y+e') -n repeatedly

in F(x_y), where a,b_c_a'_b'3c' are assumed to remain fixed in

136

2) (y.l.-x- 1) y ' - y-l-2x,.I-3= 0

answer is

loge(Xq- 5) +_- arctan "6
2

_ y..g+ 1/2 log e = Co

n
Method 8 Substitution for x y

FORM y'+L(x,y)=0

where L(x,y)= _ H (xny),

Here H is a function of a single argument,

and n is a constant to be determined.

n
Procedure Substitute u(x)= x y resulting in the separable equation

du dx

u(n-H(u)) x

The method employed to recognize this form uses the implicit

function theorem to yield an equation in n.

Cons id e r

X

G(x,y) = _ L(x,y)

We wish to determine if G(x,y) = H(xny) = H(u(x,y)).

The implicit function theorem states that this relation will hold

if and only if

_.__G._.._9.._=obx bY bx

Note that this equation represents the Jacobian in the two

variable case. Since u(x,y)=xny, we obtain the following

relationships :

137

or

._ x n . nbG._xn" ly=o

bx By

n=x _
_x

Y BY

If n is known, we can determine whether the above relationships

holds. However we can also use this relationship to generate a

value for n. If the right hand side of the last equation is a

constant than a substitution with n as that value is possible. If

it is not a constant, the method is inapplicable.

Notes

This method is a generalization of the homogeneous case

(Method 5). The method is rarely described although it accounts

for many of the substitutions in the first 367 equations in

Kamke [3_. In some of these cases Kamke prefers to give other

methods of solution. For example, in (I 293)x(y2-3x)y'+2y3-5xy=0_

Kamke suggests dividing by x 27 16y instead of substituting

- 112
u(x,y) = x y.

In this method we resorted to a special purpose matching

rule instead of using SCHATCHEN. The use of the implicit function

theorem was suggested by Engelman. In this case the theorem

fits the situation beautifully. However one will probably have

to make some assumptions to recognize forms such as

f(xCy) (bxy'-a) = xay b (xy' + cy)

In order to perform the integration s y in G(x_y) is replaced

u

by -_. It is then hoped that SCHVUOS can rid the resulting
x

i38

expressionof all occurrencesof x.

Examples (see appendix E for further discussion of these examples)

I) (x-x2y) y'-y = 0

becomes

du - i dx = 0

2) xy' + y logeX - y fOgey - y = 0

becomes

du = dx

u (i logeul)x

In Appendix E we describe an experiment in which SOLDIER was

asked to solve 76 differential equations selected from a college

text. SOLDIER was able to completely solve 67 of these problems

with an average time on the order of 5 records. An analysis of

the problems it failed to solve and steps taken to improve SOLDIER's

performance on some of these problems is also given in Appendix E.

We would also like to mention the existence of a program

which solves linear differential equations of any order with con-

stant coefficients (see Engelman [36]). It was written by Ernst

for the MATHLAB system. It utilizes the Laplace Transform method

for solving such equations. The program makes use of the rational

function package of the MAT}{IAB System.

Some methods which were not described above should be pointed

out. There are many special cases of integrating factors which

can be considered. In particular, one method guesses the form

ab
of the integrating factor to be x y _ substitutes that form

139

into the equation and solves the linear equations in the parameters

that result after setting up the conditions for exactness (i.e.,

J_- _M) = _x (_N)). If the system of equations can be satisfied,bY

then Method 3 (Exact) is applied. If the differential equation con-

tains a subexpression which is irrational in both a and y (e.g.,

sin (x 2 + y2)), then it might be useful to substitute for some part

of this subexpression (e.g., u = x2+y2). One can also attempt to

switch the independent and dependent variables. Such a change would

be useful in

(xy + x 2) y' + e y = 0

since it leads to the Bernoulli differential equation

e y x' + xy + x 2 = 0

There is a large body of knowledge regarding _catti and Kbelian

equations (i.e., y' =f(x)y 2 + g(x)y+ h(x), and y'=f(x)y3+g(x)y2+

h(x)y+k(y)). These methods, however, frequently rely on knowing

one or more particular solutions to the differential equation.

Information regarding methods applicable to Ricatti and Abelian

equations and to more general differential equations can be found

in Kamke. Kamke also contains a table of about 1250 equations

whose solution is frequently given in some detail.

As is pointed out in AppendixA_ a great deal of the informa-

tion about differential equations could be stored in tables and

searched by computers. If we presume that a continual effort

will be made to generate a library of programs and tables for

differential equations_ then programs will become a formidable

tools for solving these problems.

CHAPTER7

CONCLUSIONSANDSUGGESTIONSFORFURTHERWORK

The Performance of SIN

We believe that SIN is capable of solving integration problems as

difficult as ones found in the largest tables. The principal weakness

of SIN in relation to these tables is in cases of integrands which con-

tain variable exponents and which usually result in solutions which are

iterated integrals. Edge can solve some of these integrals (e.g.,

_xncos x dx) since it contains special checks for variable exponents.

However none of SIN's methods in stage 2 are able to obtain such iterated

integrals. The experiment reported in Appendix D also showed SIN's

weakness in handling certain algebraic integrands. On the other hand

the power of MATHLAB's rational function package means that SIN is able

to integrate many problems not present in the tables. Decision proce-

dures for cases such as the Chebyschev integrals give SIN a capability

which is not present in most tables.

SIN appears to us to be faster and more powerful than SAINT. The

added power of SIN is principally due to the additional methods that SIN

possesses. The additional speed is gained by the change in the organi-

zation of SAINT and by the use of tighter progress requirements. In

Appendix C we pointed out that though SIN can solve problems solved by

SAINT two orders and frequently three orders of magnitude faster than

SAINT, that this figure is deceptive. It is probable that under optimal

conditions for SAINT and SIN these figures will reduce dramatically so

that the gain in speed will average to about a factor of three. In

140

141

cases where the Derivative-divides routine is successful in solving a

problem (about half the time), the ratio should be much higher. The

average will be lowered by the increased effort spent on algebraic mani-

pulation on the other problems. SIN's simplifier SCHVUOS, is probably

a good deal slower (but more powerful) than SAINT's hand-coded simpli-

fier. This factor affects the cost of most of the other processes such

as differentiation and matching.

On the OrKanization of SIN

Instead of describing the organization of SIN at this point, we

would like to indicate certain aspects of this organization which arise

out of the discussion in Chapter 4. The reader is referred back to

Chapter 2 for an outline of SIN's organization.

One of the difficulties that AI programs will increasingly face

involves communication (see Newell [46]). If a subroutine performs

an analysis of a problem then its analysis must be co=nunicated to its

parent routine in such a manner that the parent routine can easily

understand the information. If two subroutines are working in parallel,

one may need to know what the other one is doing in order to perform

efficiently. An example of the usefulness of the latter type of commu-

nication was pointed out in Chapter 4 in the section in which we described

SAINT's solution of J_ dx. Here it was noted that in one of

the subproblems SAINT should not have performed the substitution

ta+ since another trigonometric substitution on the problem hadY

already been made which was undoubtedly superior. In this case SAINT

did not seek out the necessary information. A similar difficulty arose

142

when SAINT's methods could have performed transformations which were

the inverse of previous transformations. This occurs in the method

which substitutes sin_____xfor tanx, since this method may later substi-
COS X

tan x
tute -- for sin x. In this case SAINT did communicate the existence

seC x

of the previous transformation. While we do not wish to minimize the

need for explicit communication in complex problem solving programs,

we do want to point out the usefulness of highly _ communication

in certain situations. If a parent routine knows enough about the oper-

ation of its subroutines, then it is not necessary to communicate a

great deal of information_ the parent routine can determine what has

probably occurred with just a few key works of exchange. We think that

such implicit communication occurs when FORM finds excuses for the

failure of its methods to solve certain problems. In fact in these cases

the methods are not aware of the situation as much as FORM is. SIN will

ta+ transformation if another trigonometric transfor-not attempt the

mation is possible since this choice was built into the program. Similar

remarks hold for the trigonometric identity transformation. What these

examples appear to point out is that when one is able to centralize con-

trol in a routine which has sufficient understanding of a task, then the

communication requirements in the program are markedly reduced.

We noted in the discussion in Chapters 2 and 4 that SIN employs

tighter progress constraints than does SAINT. This implies that there

may be some problems which SIN will not attempt to handle though it has

sufficient machinery for solving them. (On the other hand, we believe

_in x dx until it runs out of time or
that SAINT will attempt to solve x

space.) We are not particularly worried by,such occurrences. It appears

143

to usthat it is moreimportantat presentthat aprogramhavea good
understandingof whatit is ableto doratherthanthat it havea medi-

ocreunderstandingand be able to solve more problems. If one desired

to increase the power of SIN we would wish that he spend the effort on

improving the analysis done by FORM rather than that he spend it on in-

creasing the search in FORM. We understand, of course, that it is not

always possible to take this approach. The domain of nonlinear differ-

ential equations is a good example of such a situation.

On the Organization of SOLDIER

We noted in the Introduction that we did not expect to find a con-

cept as powerful as the Edge heuristic in the domain of first-order,

first-degree ordinary differential equations. Thus we were not surprised

to fail to find a practical method similar to Edge. In fact the most

notable aspect of SIN's organization that we carried over was the reli-

ance on tight progress constraints. It seems to us that human analysis

of this problem domain also employs tight progress constraints in the

solution methods.

Let us recall from Chapter 6 that SOLDIER employs eight solution

methods. These methods are attempted one at a time. If a method decides

that it is able to make a simplifying transformation (i.e., a direct re-

duction to integration or a reduction to a known and simpler differential

equation form), then it will attempt it_ and the result of the transfor-

mation will be the value of SOLDIER. Otherwise the next method will be

considered.

In Appendix E we tested SOLDIER on some problems given in a differ-

ential equations text. SOLDIER was able to solve 67 out of 76 of these

problems. We do not believe that one should conclude from this perfor-

I//

mance that SOLDIER is far removed from being as powerful a differential

equation solver as expert humans are. We think that if the improvements

and extensions to SOLDIER that we suggest in Chapter 6 and below are made

then SOLDIER will be a powerful program indeed. We were disappointed

when we recognized this to be the case. The reason for it is that mathe-

maticians have not made great advances in this problem domain over the

past three hundred years.

On the Applications of LISP

Unfortunately, and mainly wrongly, LISP has acquired the reputation

of being a language with very low execution speed. One factor leading

to this reputation is the slow speed of arithmetic in most LISP imple-

mentations. (The Hawkinson-Yates system for the 7090 is an exception.)

Yet when one declares variables to be fixed or floating it is possible

for LISP to execute arithmetic statements as well as any other processor.

It is the convenience of mixed data types (during execution) which forces

the slow, interpretive execution speed of arithmetic operations in LISP.

Another factor leading to this reputation is that old and famous programs

such as SAINT ran interpretively. Compilation usually results in approx-

imately a twenty fold gain in speed. However the largest factor leading

to this reputation is due to the attitude of the LISP programmers. LISP

programs were usually developed in research projects where speed was only

a minor consideration. (It is safe to say that many impressive programs

such as Bobrow's STUDENT [4], Evans' ANALOGY and Slagle's SAINT could

not have been written as doctoral dissertations except in LISP.) The

trend in the recent past has been toward using LISP as a practical language

145

for projectswith real timeconstraintsonresponse.Forexamplethe
MATHLABsystemof Engelmanandtherobotprojectsat }fit andSTANFORD

havesuchreal timeconstraints. It is thusimportantto recognize

that LISPprogramscanbewrittenwhicharerelativelyfastprovided

thatonetakesspeedinto considerationin designingtheprograms.It

is ourhopethat SINcanserveasa modelfor this lessonandremove

someof thestigmaattachedto LISP. It is far tooeasyto writeLISP
programswhichexecuteslowlyif onebecomesbeguiledbytheeaseof

usingLISP'srecursivemechanisms.SAINT'spatternmatchingprogram

Elinstwasfar toorecursiveto runefficiently. Howeverit wasa much

smallerprogramtherebyandthis factorwascrucial in the implementation

of SAINT. The rational function package u_ed in SIN runs slowly when

parameters are introduced into a rational function. While such a de-

crease in speed is inherent in the task, it is also due to the extensive

utilization of the recursive nature of the LISP list structure in the

representation of rational functions. A special purpose representation

of rational functions such as used in Brown's ALPAK [6] or Collins'

PM system [12] should increase the speed of the rational function pack-

age by one to two orders of magnitude.

On the TeachinK of Integral Calculus

We would like to see the introduction into first year calculus

courses of the concepts underlying the Edge heuristic and the Liouville

Theory. Besides giving the student a very powerful integration method,

such a study might acquaint him with practical applications of notions

derived from modern logic such as Godel numbering or decidable problem

_e x2domains. Such a course might also indicate why dx is not an ele-

146

mentaryfunctionratherthanleavesucha statementwithoutproof. The

relationshipof theEdgeheuristicandtheproblemsolvingtechniqueof

guessingcouldreasonablybeemphasizedin coursesaimedat a moreprac-

tical foundation.

Improvements and Extensions to SIN and SOLDIER

All the programs discussed in this thesis would profit by being

rewritten for the LISP system of the MAC PDP-6. The PDP-6 LISP system

executes about three times as fast as the 7094 LISP system on compiled

function and even faster on interpreted ones. This is due to the im-

proved instruction set of the PDP-6 and to improved system's programming

rather than an increase in the machine speed. The MAC PDP-6 also has

256 K of memory which would mean that all the routines could certainly

be loaded at one time. This would allow greater interchange between

SIN and SOLDIER and the rational function package. It would allow

SIN and SOLDIER to be used as subroutines to the MATHLAB system of Engel-

man. The excellent scope output routines of Martin [37] are available

on the PDP-6 as are teletype output routines written by Millen for the

MATHLAB System [40]. Routines which accept FORTRAN-like (i.e., infix)

notation for algebraic expressions are available and should be used in-

stead of the LISP (i.e., prefix) notation which is now used in inputs to

SIN and SOLDIER. Anderson of Harvard University is currently working on

a program which permits hand written input of algebraic expressions from

a Rand Tablet [i]. Such a program could be used in the future as well.

SCHATCHEN should be rewritten so that new modes can be defined by

the user without reprogramming relevant sections of SCHATCHEN. The

simplifier SCHVUOS served us well while we required a small simplifier.

However a new, more powerful and efficient simplifier written along the

147

lines indicated in Chapter 3 should be used. As is clear from Chapter 6

and Appendix E this simplifier should have factoring and division capabi-

lities not currently available in general purpose simplifiers. The task

of matching expressions for identity should be performed by a program such

as Martin's matching program rather than by SCHATCHEN [37].

SIN's second stage would profit from a better handling of algebraic

integrands. This is clear from Appendix D. Another lesson learned in

that appendix is the usefulness of a capability whereby the user can com-

municate with FORM and some of the methods used in SIN in order to intro-

duce new functions such as the error function. A table of integrals invol-

ving the error function which contains 145 entries was computed by Maurer

in 1958 [38]. Such a table should be computable by SIN as well.

It is clear that much more work needs to be done on the Edge heuris-

tic both as a method for solving integration problems and as a possible

tool for teaching freshman calculus students. We understand that Risch

is currently programming his method of integration using the rational

function package. Such a program could be included in SIN's third stage

as well.

In discussing SOLDIER in Chapter 6 we noted that a great number of

methods are known which have not yet been programmed. An interesting

project is involved in finding particular solutions to differential equa-

tions. Such solutions can be used to find general solutions to Ricatti

differential equations. In Appendix E we noted that the output of SOLDIER

rarely conforms with the form of the text books' output. Another project

would be to devise a routine which translates SOLDIER's output to conform

with the implicit conventions used in text books.

148

Webelievethat if workis continuedontheimplementationof new

methodsfor SOLDIER,thenthis programwill becomea truly formidable

tool in solvingordinarydifferential equations.In fact a programsuch

asSOLDIERcanbecomeanactivecompetitorwith text booksor journal

articles asamediumfor thepermanentstorageof knowledgeaboutmethods
of solution.

On a Mathematical Laboratory

In a forthcoming monograph by Martin and Moses the concept of a math-

ematical laboratory will be introduced. In a mathematical laboratory a

user will be able to solve symbolic problems in mathematics. A mathema-

tical laboratory is envisioned to consist of two major components, a

general purpose system and a set of specialized programs. The general

purpose system will deal with input and output and will provide a

command-oriented language with many capabilities. The specialized

programs will deal with tasks which are sufficiently complex to require

a separate organization. SIN and SOLDIER are prototypes of such special-

ized programs. Specialized programs will in the future employ a set of

rather general routines such as a pattern directed language similar to

SCHATCHEN or a simplifier such as SCHVUOS. These frequently used routines

will form a data base from which new specialized programs will be more

easily written in the future. Work is proceeding in this country on all

aspects of such a mathematical laboratory, but we shall concentrate our

discussion on the specialized programs. In a recent thesis [28], Itur-

riaga has written a program in FORMULA ALGOL for finding limits of expres-

sions and for determining whether one expression is greater in value than

another over some domain. This work represents an extension of work on

149

limits performedbyFenichel[19]. Noworkhasbeendoneto ourknow-

ledge,onfindingsumsof infinite series. Jolleyprovidesa tableof

suchseries[29]. Norhasanysignificantworkbeendoneondefinite
integration. BierensdeHaan'smonumentalworkonthis areacanbe

consulted[24]. In bothof thesecasesonemightat first utilize a

table look up as described in Appendix A.

Leaving aside the area of analysis we note that Maurer [39] and

Mclntosh [57] reported on systems which deal with finite groups. Some

routines have also been written for solving specialized tasks in topology.

In fact a new theorem in topology was proved as a result of experiments

performed by such programs [50]. Likewise specialized programs in com-

binatorics have been written [16]. Such programs should be expanded

upon, systematized, and made available as part of a larger symbolic mani-

pulation system in pure mathematics.

Along with the need for practical work in algebraic manipulation

there is a need for parallel work on theoretical results. Collins' study

of the Greatest Common Divisor algorithm led to a major imporvement of

the Euclidean GCD method [13]. Similar studies are needed of methods

for factoring polynomials, especially over extensions of the ring of in-

tegers. We need a study of the degree of growth of the results of certain

algebraic transformations. We should have examples of very bad problems.

In [42] we present such a problem in the domain of polynomial equations.

Recursively unsolvable results such as those in Appendix B point out cer-

tain difficulties in algebraic manipulation. Proofs of the decidability

of certain subcases such as in Richardson [52], Caviness [9], Brown [7],

Risch [53], and Tobey [63] are useful also and these may in turn lead to

150

programswhichimplementthedecisionproceduresused.

On Artificial Intelligence

In the area of Artificial Intelligence we would applaud all projects

which required and utilized a large base of specialized knowledge. Robot

projects are examples of such projects. On a less ambitious level we

would like to note that it might be useful to develop a program which

solves word problems in the calculus. Such a program would counter, (if

only temporarily_) the objections of those who claim that the semantic

approach of Bobrow cannot be extended. One approach toward this problem

would be to construct several methods of solution (e.g., "rate" problems

of several types). Then the program would use local clues (probably key

word analysis as in Weizenbaum's Eliza [66] will do) to determine which

solution method is appropriate. Then the method chosen should guide the

program in extracting the information from the problem statement necessary

for a complete solution.

It would also be interesting to have some work leading toward a

program which solves multiple choice questions on the level of the MAA

high school prize examinations. Let us consider a typical problem.

"At what time between 4 and 5 PM are the hands of the clock exactly

opposite each other?"

If the program knows that the answer involves the denominator of ii

and one such answer is presented, then it should guess that answer. If

only one answer involves a denominator of ii and is moreover between 4:50

and 4:55 PM, the program should guess it. These guesses would be made at

stage I of the program.

151

If stage1is noteffectivebut if theprogramknowsthemethodof

solution(a linearequation),thenit shouldsolvetheequation.This
wouldbedoneat stage2 of theprogram.

If neitherof thesestagesis appropriate,thentheprogrammust

obtainananalysisof this situation. Suchananalysisis presently

beyondthecapabilitiesof AI programs,butnotgrosslybeyondthese
capabilities.

Presumablyoneof themethodsavailableto this programis a rate

problemsolver. Thestatementof theproblemdoesnot immediatelyimply
a rateproblembut theknowledgethat theminutehandandthehourhand

travel at different ratescouldlendweightto suchanhypothesis.Let
x bethetimein minutespast4 o'clockat whichtheeventoccurs.Then

theminutehandtravelledx minutesbetween4 o'clockandtheoccurrence

of theevent. Thehourhandtravelled_ minutesduringthat time. How-

everthehourhandstartedwitha 20minuteadvantageandendedthirty
minutes(onehalf a revolution)behind.Thus

x
x =20+ 30+ I--2

600x =-_ = 54 minutes

Thesolutionaboverequiredtheuseof informationaboutclocks

andtherelationshipbetweenclocksandcircles. It alsorequireda

sophisticatedwordproblemsolverthat wasableto utilize this infor-

mationto set upthelinearequation.Anothermethodof solvingthis

problemrelies somewhatmoreheavilyonmakinginferencesaboutdiagrams.

In eithercaseit appearsthat a gooddealof machineryis requiredfor

theanalysisof this problem.Besidesthewordproblemsolveraprogram

whichmakesinferencesbasedondiagramsof planefiguresis alsouseful.

Whilesuchprogramsmaynotbesufficient in orderto performtheanaly-

152

sis of this problem,theycertainlygoa longwayin that direction.

APPENDIXA

ITALU- AN INTEGRAL TABLE LOOK - UP

This appendix describes some experiments which were performed

with an integral table look-up. Although a table look-up is

probably inferior in the long run to an integration program with

regard to power or speed, the techniques employed in this routine

could be found useful in other areas of symbolic mathematics such

as exact definite integration, summation of series, or differential

equations.

There are several ways in which one could search a table of

integrals. There is the brute force approach. In this case each

entry in the table is matched for equivalence with the expression

to be integrated. This scheme is used in SIN's Derivative-divides

routine. Such a scheme takes a long time when the table is large,

of course. A better approach is to sort the entries in the table

by the factors which appear in them (e.g., all entries with sin x

as a factor are in one subtable). Thus when presented with

• x
slnxe _ one checks all subtables for the one which contains sinx.

In that subtable one checks'for another part of the table which

contains sinxe x and there one presumably finds the entry desired.

This approach would require that there be n_ entries for an

integrand with n factors (unless the expressions are canonically

ordered). A table look-up along these lines was discussed in

Klerer and May [32]

L
153

154

Besidesbeingrelativelyslowtheseapproachesarenotsensitive
to thefact that anintegraltableusuallypresentsgeneralizedforms
of integrands(e.g., a_2x2+bx+c)andnot just particularintegrands.

(e.g., _'_). Thisis dueto thepresenceof undeterminedconstants

in the integrand.Theseconstantsare used as coefficients as in

_ sin(ax+b)dx or exponents as in _xndx or [xnsinxdx. The example

xnsinxdx points out a further feature of the integral table, that

is, the presence of iterated integrals in the table. A good integral

table look-up should be required to make use of all of these features

of the tables.

An integral table look-up, called ITALU, was programmed to

account for the features of the table just mentioned. It had the

additional property of being relatively fast by making use of the

technique of hash-coding.

By carefully hash-coding the expression to be integrated one

can expect to obtain a number which would correspond to relatively

few expressions in the table. Furthermore the hash-code can be

designed to account for the distinctive features of the table. The

hash-coding scheme which was implemented ignored constants in sums

and products. Thus sin (ax+h) coded the same as sin(2x), sin(x+2),

minx, and sin(3x x+by+z). The hash-code, moreover, was a floating-

point number and the code of a sum was the sum of the codes of the

terms in the sum_ with a similar rule for products. Thus the code

maintained the algebraic identities for sums and products. Hence

sinxe x coded like e x minx. In this manner we avoid the need for

155

a canonicalformof anexpression.Onefurtherfeatureof this

codingschemewasthat termsin a sumwhichhadcodesidentical

with thoseof previoustermswereignored.Thussin (x+yx)
codedlike sinxandx2+2xy+3xcodedlike (2y+3)x + x2and
ax2+bx+c.

Thecodingschemewasobtainedrecursively.Thevariableof

integrationhada fixedcodeof 0.95532.Anytrigonometric,
arctrigonometricor logarithmicfunctionhadassociatedwith it

a fixed floating-pointconstantwhichgenerallywasexponentiated
bythecodeof its argumentin orderto obtainthecodeof the

expression.Sumsandproductsweretreatedasdescribedabove.

Exponentiationwasa relativelycomplexoperatorfor thecoding

scheme.Thisis dueto thefrequentoccurrenceof exponents
Ii

-2, -I, 2' 2' 2 in thetables. Whentheseexponentsoccurredthe
codefor thebasewasraisedto theexponentandtheresultwasthe

codeof theexpression.Anyotherconstantexponentwascodedas

1.43762andthevalueof thesubsequentexponentiationbecamethe
code.Thusxn is codedlike x3 or xa or x-4"5 Fixedbaseswere

all codedalike. Thusex codedlike 2x or yX.

Anadvantageof this codingschemewasthat SCHATCHENpatterns

couldbecodedeasilyas if theywereexpressions.Thiswasdueto

thefact that thevariablesin thepatternwereconsideredconstants

with respectto thevariableof integration(assumedto bex

throughoutthetable), andhencewereignoredin sumsandproducts
andhada fixedvaluein exponents.Entriesin thetableshad

1eL:
J.JV

integrands which were SCHATCHEN patterns (e.g., sin _/COEFFPT,

NONZERO-AND-FREEOFX x+B/coEFFP, FREEOFX). Thus the full matching

capability of SCHATCHEN could be employed in order to obtain the

values of the constants in the integral table entry.

ITALU had an internal table of code numbers for the expressions

in the table. This internal table was searched using a binary

search (i.e., the codes were linearly ordered by their numerical

values). Corresponding to each code in this table was the location

on the disk where the integral table entry resided. Once a code was

assigned to an expression, it was determined if an entry in the

table had an identical code, and the file on the disk containing

that entry (if any) was read. In order to conserve disk space

several entries were on the same file, but these entries were

associated with their codes so that the search of the file was

linear but rapid. For each expression having the desired code

(several are possible), SCHATCHEN was used to determine if there

was a match between the pattern which represented the integrand in

the table and the original expression. If no match was found, the

next expression was examined, and so on until all the expressions

with the appropriate code were examined. If a match was obtained,

the integral was evaluated after making appropriate substitution for

the result of the match. Thus the integral contained the values

of the constants in the integrand. The device of evaluating the

the integral allowed the integral to be a LISP function. In this

157

manneriteratedintegralscouldbeobtained.HencetheITALU

programsatisfiedtherequirementsof anintegraltablelook-up
thatweconsideredabove.

Theimplementationof ITALUwascarriedthroughupto the
pointwhereall of thestepsabovehadbeenimplementedandthe

programwastestedonseveralproblems.Thelargestnumberof

entriesin thetablewasonlytenat anygiventime,andthus

thepropertiesof thecodingcouldnotbefully assessed(e.g.,

onecouldnot tell howfrequentlyu_relatedentriesyieldedthe
samecodenumber).Theexecutiontimeof a call to ITALUwas

generallyaboutI second.Mostof this timewasspentaccessing
andreadingthedisk. A setof routineswerewrittenfor

facilitating theadditionof newentriesto thetable. However

thedescriptionof eachentryasa SCHATCHENpatternwitha

correspondingintegralwasa fairly tediousjob. A compact

representationof theexpressionsin thetablewasobviously
desirable,butwasnot implemented.

Modificationsto thehashcodeof ITALUwereconsidered.
Underthecurrentcodingscheme_ codeslike x. One

possibilityis to ignorethevalueof constantsin sumsand

products,but recognizetheir existence.Suchaschemewouldbe

usefulin handlingalgebraicexpressions.

Wealsoconsideredusinga hash-codingscheme,suchas
Martin's_7] Martin'shashcodesareelementsof finite

fields ratherthanfloatingpointnumbers.Finite field

158

arithmeticis preferablewhenthereis a risk of a floating-point
overflowor a round-offerrorduringthecomputationof thehash
code.Wefelt that thesedifficulties couldbeignoredor easily

overcomein thecodingof expressionsto be integrated.In order
to accountfor round-offerrors,wethusallowedfor a variance
of i ×10-6 betweenthecodeof anexpressionandonein thetable.

In thedomainof symbolicintegration,a tablelook-upis

probablynot thebestsolution. Programscannowcompete
effectivelyin manycaseswith thetableswith regardto speed

andcompleteness.Thesituationin thefuturecanonlyimprove

therelativepositionof the integrationprograms.Tablessuch
asPetit Bois'_I] with its 2500entriescontainmanyerrors,

someof whichareserious(e.g.,jlog cosxdx
cosx , [51] p. 150).

However table look-up devices appear to have current

usefulness in other areas of symbolic mathematics. Very little

work is being done at present on summation of series and exact

definite integration. Tables in these areas exist - Jolley's _9]

in summation and Bierens de Haan's [24] monumental work on definite

integration. For differential equations we reported solutions

methods in Chapter 6. However much still remains to be done, and

tables could be used as long as programs have not caught up with

the full power of tables such as Kamke's DO] Tables could be

extended tQ include a great deal of information besides exact

solutions. For example, tables could be employed to obtain good

numerical techniques for solution or references to papers on

159

particularcases.Weshouldpointout that someentriesin a

tablewouldbehardto look-upin anyreasonableway. For
example,theentryxy'=yH(xny)properlydeservesa special

purposeprogramaswasdonein Chapter6. Informationabout

chemicalcompoundsis currentlybeingstoredin tableswhich

aresearchedbyspecializedtechniques.Similarmethodscould

beusedin mathematics.Theexactmethodsof ITALUareclearly

notextendableto theotherproblemdomains- specialpurpose

programsshouldbeusedin eachcase. Howeverthehash-coding

techniquecoupledwith theuseof a matchingprogramfor
increasedpowerseemrelevantto eachof theareasconsidered.

APPENDIX B

RECURSIVELY UNSOLVABLE RESULTS IN INTEGRATION

A recent theorem by Richardson [52] showed that the matching

problem for a class of functions we shall call R-elementary is

recursively unsolvable. This result is easily applied to show that

the question of determining whether integrals of R-elementary functions

possess R-elementary solutions (or elementary solutions in the sense

of Liouville (Chapter 5)) is likewise recursively unsolvable.

Richardson's result, announced January 1966, is probably the first

theorem about recursively unsolvable problems in analysis and has

aroused great interest in the field of algebraic manipulation. Refer-

ences to it are made in Brown [7], Caviness [9], Fenichel [19],

Moses [42], and Tobey [63].

There is, however, a feeling among some (e.g., Risch [53]) that

Richardson's unsolvability result may be due to the fact that the

integration problem he showed unsolvable is not well-posed. In this

appendix we shall sketch Richardson's unsolvability proof and indicate

points in the proof where some of this contention has arisen. We

shall then present results of a similar nature to Richardson's which

avoid these difficulties in the proof by extending the domain of the

problem to nonlinear differential equations. These results are proved

using similar techniques to Richardson's and were originally proved,

interestingly enough, over a year before Richardson announced his proof.

160

161

In orderto proceedweshall requirethefollowingdefinitions.

TheR-elementary functions are obtained by the operations of

addition, multiplication, division and substitution upon real variables,

x I, x 2, ..., x n using the constants _, the rational numbers, loge2 ,

x

and the functions e , sin x, cos x, and loglx I

The constant problem is to decide, given an R-elementary

function f(x), whether f(0)--O.

The identity(matching)problem is to decide, given an R-

elementary function f(x), whether f(x)_0.

The intesration problem is to decide, given an R-elementary

function f(x), whether there exists an R-elementary function g(x),

such that g'(x)mf(x).

Richardson first showed that the identity problem reduced to

solving the constant problem. Thus, if one restricts the R-

elementary function to a domain where the constant problem is pre-

sumably solvable (e.g., by allowing only the rational operations), then

the matching problem is likewise solvable.

He then showed that the matching and integration problems for

the R-elementary functions is recursively unsolvable. In order to

proceed with our sketch of that proof, we shall require the following

definitions.

Hilbert's 10th Problem (The Diophantine Problem)

Does there exist a procedure for determining whether the

162

equationP(Xl,x2, ..., Xn)=0, whereP is anypolynomialwith
integercoefficients,hasa solutionwhereeachxi is aninteger?

Exponential Diophantine Problem

Does there exist a procedure for determining whether the

equation P(x I, x 2, ..., Xn, Xn+l)=0, where P is any polynomial with

integer coefficients and where Xn+ I is replaced by 2 xl, (i.e.,

P(Xl, ..., Xn, 2Xl)=o) has a solution with each xi, i=l, ..., n an

integer?

Theorem (Davis, Putnam, Robinson) [14]

The exponential diophantine problem is recursively unsolvable.

The version of the Davis-Putnam-Robinson result that Richard-

son used is as follows:

Theorem A There exists a polynomial Q(y, x I, ..., Xn, 2 Xl) such

that the problem of determining whether for each integer value of y

there exist integer solutions x I, ..., x n to the equation

Q(y, Xl, ..., Xn, 2Xl)=o, is recursively unsolvable.

Hilbert's lOth problem has not yet been decided although it is

suspected that the problem is recursively unsolvable as well.

Let us now proceed with Richardson's argument.

Consider the polynomial Q of Theorem i. Let the x i be real

numbers. Then, if the equation I

n Q2(I) E sin2_x. + (y • x n, 2Xl) = 01 ' Xl' "'_
i=l

163

possessesreal-valuedsolutionsfor anintegervalueof y, thenthe

xi mustbeintegers,andif Qpossessesintegersolutions,equationI
certainlyhasreal solutions.

Notethat sinceeachtermin I is real-valued,the'§umof the
squares"deviceforceseachtermto bezero. Sincesin_x. = 0- x.1 l
is aninteger,thex. mustall beintegers. Thisillustratesa con-l
ceptweshall call forcing. Forcingwill befrequentlyusedin this

nappendix.ThetermE sin2_x
i=l l forcesQto possessintegersolu-

tions. Theuseof _andsin x in this mannerwasforeshadowedby
Tarski[61].

Thenextstepis to showthat thereexistsandR-elementary

functionf(y, Xl, ..., Xn)suchthat f(y, Xl, ..., Xn)< i for a given

integery andfor somereal xi if andonlyif Q(y,x_,x_..... 2x_)=0

for someintegervaluesof thex_, andfor thesameintegervalueof y.

Richardsonshowsthat wecantakef(y, Xl, ..., Xn)to beof
theform

n in2xiA(n) E s K4(y,xI, + Q2(y,Xl' 2Xl)i=l i "''' Xn) "''' Xn'

whereA is a largeR-elementaryfunctionof n andeachK. is ai
suitablychosenlargeR-elementaryfunctionof its arguments.In this

formf is anR-elementaryfunction. Theproofthat f hasthedesired

164

propertyutilizes anargumentbasedontheconsiderationthat if f
is sufficientlycloseto 0 in value,let ussupposethat

f(Y' Xl' x2' "''' Xn) _ I, andlet eachxi becloseto theinteger,
- I

x_, say,thenQ(y,Xl' x2' "''' Xn'2RI)<_'n)" Whatis desiredis
to forceQto havethevalue0 at thex_. SinceQis continuousin1
its variables(it is a polynomialin them)andmoreoverhasinteger

valuesfor integerarguments(thecoefficientsareintegers),what

is necessaryis that thederivativeof Qis sufficientlysmallso

that Qdoesnotmateriallychangeits valueontheintervalbetween

xi andx_. Forthis purposetheK.whicharebasedonthepartial1 1
derivativesof Qareforcedto besmallaswell. Thisis doneby

2 1
requiringsin _ xi K__ A(n-----)"

NowRichardsonshowsthat onecanobtaina codingwhichre-

ducestheproblemfor then variablesxi of Qto a singlevariable
x. Heobtainsa functionG(y,x) suchthat G(y,x) < I for real

x _ (V¢>0)(G(y,x) < e)" _ real x.1

f(y, xI, ..., Xn)_l--Q(y,x_, ..., x_, 2x_)= 0 for someintegersx*.l

Thecodingis

xI =h(x), x2 =h(g(x)), x3 = h(g(g(x))), ...
3whereh(x) =xsinx,g(x)= xsinx.

Richardsonnowusestheloglxlfunctionto obtaina decision.
Considerthefollowingequations:

165

I_= el°glxj thustheabsolutevaluefunctionis R-elementary.

x'y = x-y+Ix-yl this subtraction has value 0 if y=x.
2

Min(y,x) = y'(y'-x), the minimum function restricted to non-

negative values.

Now if G(y,x) _ I for some real x and integer y, then

G(y,x) < _ for some real x by the ¢ case above, and for this x,

2-2G(y,x) > i . Thus, min(l, 2"2G(y,x)) = I for some real x. If

G(y,x) > i for all real x, then for all real x,min(l,2"2G(y,x)) = 0.

By the continuity of G which is preserved either min(l, 2"-2G(y,x))ml

for some interval of values on the real axis for x and for a

fixed integer value of y, or min(l, 2A2G(y,x)) =- 0 for all real x.

Now if we let M(y,x) = min(l, 2"2G(y,x)), then the question of

deciding whether M(y,x) is identically 0 is equivalent to deciding

whether Q(y, Xl, ..., Xn ' 2Xl) z 0 has integer solutions and is thus

recursively unsolvable. M(y,x), we note, is R-elementary.

The above is a sketch of the proof of the recursive unsolvability

of the matching problem. The recursive unsolvability of the integra-

tion problem is obtained as follows:

Consider

x 2

M(y,x)e dx

If M =- 0 for some integer value of y, then the integrand is 0

and possesses a solution (e.g., 0). If M = i, on some interval then

i66

the integrand is equivalent to e x2 which possesses no elementary

solution on any interval, as is well-known. Hence, the integration

problem for R-elementary functions is unsolvable since one cannot

tell whether M m O.

This completes the sketch of Richardson's proof. As was seen,

the decision step in the matching problem necessitated the use of

the absolute value function. Caviness argues that either the abso-

lute value function or the constant _ (used in sin _ x and needed

to assure a zero value on integer arguments) are the culprits in

allowing Richardson's results to hold. The constant _ should not

be too surprising in the context since there are many problems re-

lated to the constants e and _ which are not yet solved (note

i_x -i_x

sin _ x e - e). For example, it is not known whether
2i

e+_ is a rational number.

We should note that the absolute value function arose when we

considered only one of the infinite number of inverses to the log

function. For example we can obtain the absolute value function by

considering _x-'Z to possess only one solution. If we were to

evaluate each of the values of an R-elementary function and were to

consider f(x) to be equivalent to 0 if it were 0 for each of its

values, then one might obtain a more tractable problem. One would

still be left with ticklish problems regarding the constants e and n.

These one might suppose are not very interesting from a practical

167

standpoint.However,by introducingsquare-rootsinto thepicture,
onemightcomplicatethesituationoncemoresincesuchanintro-

ductionappearsto leadto difficulty in integration(seeRitt [54],
Risch[53]).

Therecursiveunsolvabilityof the integrationproblemwas
obtainedbymakinguseof thefact that onecouldnot tell whatthe

simplestdescriptionof the integrandwas. In previousworkonthe

problemof integrationin finite termssucha difficulty wasusually

ignored.If onecouldignoresucha difficulty in thematchingor

in theconstantproblem,thentheseproblemswoulddisappear.The

samecannotbesaidof the integrationproblem,of course.

Thequestionnowarisesasto whetherthereareunsolvable

problemsin theareaof symbolicintegrationwhichavoidtheuseof

theabsolutevaluefunctionandwhichdonotsimplyreduceto the

matchingproblem.Belowwegivesomesimpleandhardlysurprising

resultswhichindicatethat suchproblemsdoexist whenoneconsiders

nonlineardifferential equations.

Weshall requirethefollowingresult:

Theorem B (see Ritt p. 73)

The equation

(II) y, + y2 = i +

x

where p is a constant (a computable complex number, say), has a parti-

cular solution which is a rational function in x (with computable

168

complexcoefficients)if andonlyif p is aninteger.

Theorem 1

The exponential diophantine problem (Theorem A) is equivalent

to the problem of determining whether, for integer values of y, the

system of differential equation S has particular solutions which

are rational function in x.

(Hence, the latter problem is recursively unsolvable_

dP i

a) _ = 0, i=l, ..., n

dYi y2 Pi(Pi+l)

(S) b) _-x + = i + x2 , i=l, ..., n

dz 2
c) _r+ z = 1

X _

Q2(y, Pl, "''' Pn' 2pl)

Proof. Suppose S has such a set of solutions for a given integer

value of y.

By a) each Pi is a constant.

By b) and Theorem B each Pi is an integer.

2 el)
Q(Y' PI' "''' Pn' = 0 by c) for y an integer.

This is so since by a) and b) Q is a constant. Thus, for z to

have a particular solution which is a rational function, -Q2=q(q+l)

for some integer q. But q(q+l) _ 0 for integers q and _Q2_ 0 since

Q is integer valued. Thus, Q(y, PI' "''' Pn' 2pl) = 0 for integer

169

valuesof PI' "''' Pn"

SupposeQdidpossessintegersolutionsci for someinteger

valueof y, thenbyfixing eachPi to bethecorrespondingci, we
obtaina set of rationalsolutionsfor S.

TheoremBhasa corollarywhichstatesthat thedifferential

equationII hasa generalsolutionwhichis a Liouvillefunctionif p
is aninteger.

TheoremI can,therefore,beextendedto showthattheproblem
of determiningwhethersystemsof differential equationsof the

formShavesolutionswhichareLiouville functionsis recursively
unsolvable.

Letusconsiderthediophantineanalogueof thesystemS (i.e.,

noexponentiationin Q). Wenowhavea systemof polynomialequa-

tionswith integercoefficients. Thesolutionsof suchsystemsof

equationsis in thedomainof differential algebra(seeKaplansky[31]).
Theorem1 leadsto theresult thatHilbert's 10thProblemreduces

to a decisionproblemin differential algebra.

Letusnowconsidertheproblemof determiningwhethera
differential equationf(x, z, z', ..., z(n)) = 0 hasasolutionz(x)

wherez andall its indicatedderivativesare real-valuedfunctions

of X.

Morepreciselyconsider

//u

g(y, x, _')), ..., z (n

2Wl) n(n)2 ., + i_ I sin2_ w.z + Q2(y, Wl' w2' .. Wn' z

=0

In g, y is an integer, x is the independent variable and is

real, z is the dependent variable and the w. are defined as follows:
l

z(n-1)

n (n-l) '

z(n-2)_ xz (n-l)

Wn-i = (n-2)_

x2z , , (_i) (n- l)x(n" i) z (n-l)
w I = z - xz' + --_----. + ... + (n-l)'.

Theorem 2 The problem of deciding whether

g(y, x, z, z', ..., z (n)) = o has a real-valued solution which

possesses n real-valued derivatives is recursively unsolvable as

y varies over the integers.

Proof. Let y be fixed.

Suppose g has such a real-valued solution z(x). Since we are

dealing only with real-valued functions the term (z(n)) 2 forces

z (n) = 0 and thus z must be a polynomial of degree (n-l) at most.

n-i

Each w i was so chosen that if z = an_iX + a0, then w i = ai+ I.
Since

171

sin _wi =0, ai is forcedto beaninteger. Moreover,since
Q(y,wI, w2,..., 2wl) = 0, Qmustpossessa setof integersolu-

tionswi=ai+I.
SupposeQ(y,xI, ..., xn, 2xl) = 0 hassolutionsxi= ai,

n-I
ai integers. Thenz(x) =an_iX + ... + a0 is a solutionto g=O.

Thestatementof Theorem2 is toogeneralto makeit a
satisfyingdecisionproblemsincetheset of all real-valued

functionswith real derivativesis notcomputable.Thetheorem

wouldholdfor anycomputablesupersetof functionsof thesetof

polynomialsof degreen with integercoefficients.

Theorem2 seemsto indicatetheconceptof a real-valued

solutionto a differential equationis quiteelusive.

APPEND_ C

SIN 'S PERFORMANCE ON SAINT 'S PROBLEMS

As an experiment for testing SIN's performance, we attempted the

86 problems attempted by SAINT and reported in Slagle's thesis. SAINT

integrated 84 our of these 86 problems and announced failure to integrate

x_+ x and cos _x. Slagle reports that SAINT solved the 84 problems

with an average time of 2.4 minutes (144 seconds). SIN solved all 86

problems with an average time of 2.4 seconds. This average becomes 1.3

seconds when one discounts the cost of chaining. Chaining occurred on

22 our of the 86 problems. Chaining is considered to take 4.5 seconds

in this accounting. That time appears to be a minimum bound for the

operation. In order to determine the time required by SIN to solve a

problem, we used the execution time reported by CTSS. The swap time in

CTSS is ignored here.

Over half of the 86 problems (more precisely 45) were completely

solved by SIN's first stage. These problems were solved with an average

time of 0.6 seconds. Of the remaining problems only two required the

Integration-by-parts routine (i.e., x cos x and cos _x - the latter gene-

rates the subproblemj2y cos y dy). Two routines were added to SIN in

order to solve the definite and double integrals among the 86 problems.

These routines call SIN to perform the integrations indicated and make

appropriate substitutions at the upper and lower bounds.

Below we list problems for which SAIIqT results are available and

the comparative results for SIN.

172

173

Problem

SAII_ time SIN time discount

in seconds in seconds for chain Notes

2

dx 1.8 0.20 Fastest problem

solved by SAINT,

integrated by table

look up in IMSI/q

_ sec 2t dt
2

I + sect - 3 tan t

dx
2

sec X

x dx
4-x 2 + 2x + 5

sin2x cos x dx

(sin2x + 1)2 cos x dx

eXdx
i + ex

2xe

dx

I dx
I - cos x

2^tan x sec x dx

1080 9.18 4.6

126 0.87

102 5.87 1.3

960 9.68 5.2

120 0.33

228 2.48

102 0.28

222 6.23 1.7

120 9.78 5.3

144 0.47

Longest solution

time in SAINT.

9 subgoals in

SAINT, I in SIN

7 subgoals in

SAINT, 3 in SIN

3 subgoals SAINT
I SIN

14 subgoals SAINT

i SIN

2 subgoals SAINT

0 SIN

174

Problem

I

_0 x lOgeX dx

sin x cos x dx
0

SAINT time SIN time discount

in seconds in seconds for chain

132 0.70

156 0.30

Notes

Largest speed

ratio between

SIN and SAINT

I x dx 576 i0.i 5.6 Longest solution
+ I

in SIN.

13 subgoals SAINT

i SIN

2e x
2 + 3e 2x dx 360 8.25 3.7 4 subgoals SAINTi SIN

x

(i - xZ))/_ dx 660 8.77 4.3 13 subgoals SAINT
2 SIN

6xe dx 510 7.92 3.5 i0 subgoals SAINT
4x

e +I i SIN

loge(2 + 3x2)dx 390 7.20 2.7 i0 subgoals SAINT
i SIN

The last 3 problems were solved by SAINT in 540, 318 and 210 seconds

respectively after an entry was added to SAINT's table which was used in

the solution of these problems.

175

In order to fully account for the effect of garbage collection the

problems were run in large batches. Thus garbage collection time was

distributed over the set of problems. Garbage collection time probably

accounts for less than 20_ of the total time in SIN.

We should note some of the reasons for the time difference in the

results of SAINT and SIN. SAINT was run on the 7090 and SIN on the 7094.

This accounts for about 40_ of the gain (2.18 vs. 2.00 microseconds in

the cycle time and overlapped instruction execution in the 7094). The

single major difference in the time is due to the fact that SAINT ran

mostly interpreted (a major exception being the simplifier), and SIN was

run mostly compiled. Compilation is usually considered to gain a factor

of 20-30 in the speed of the program. We tested some problems with SIN

being executed completely interpretively. We noted an average speed loss

of a factor of 15. However none of the problems which were run inter-

pretively included problems which required chaining. Thus we were unable

to run some of the more complex problems in the set interpretively.

By taking these factors into account we note that SIN would only

run about three times faster than SAINT on the average when both are

executed under optimal conditions. The reason for the relatively small

ratio in SIN's favor we believe is because most of the time spent in SIN

in solving the harder problems in the set is spent in algebraic manipu-

lations (e.g., simplifications). Algebraic manipulation in SIN is not

materially faster than it is in SAINT. Though the analysis performed in

SIN yields a very direct solution, the total time spent to obtain the

solution is still significant. Hence the contrast with SAINT in regard

to total solution time is not very great.

APPENDIX D

Solution of Problems Proposed by Mclntosh

Professor Mclntosh (National Poleytechnic Institute of Mexico)

required the solution of eleven nontrivial integration problems for

a physics paper that he was writing _5]. He found the solution to

these problems in Petit Bois' table. He also asked us to solve

these problems using SIN. The problems involved variable coefficients

in a square root of a quadratic which the version of SIN current at

that time was not equipped to handle. Although we had intended to

add the variable coefficient capability to Method 5p it was not

needed for the SAINT experiment described in Appendix C. We rewrote

Method 5 to account for variable coefficients. Interestingly enough

this was not sufficient for a satisfactory solution of the problems

since Professor Mclntosh required that the output be in terms of

the arcsin function. In some cases the transformations proposed

by Method 5 yielded an answer in terms of the log function. To

force the arcsin result a further method was added.

integral was of the form

C dx

Thus if the

the substitution y=

denominator of the factor x.

to solve all eleven problems.

i
was made. This substitution rids the

x

With these modifications SIN was able

In the solutions obtained by Mclntosh

176

177

we noted some discrepancies from solutions obtained by SIN. It

should be noted, however, that Mclntosh was only interested in

the coefficient of the arcsin terms and not in the argument. All

the errors were minor and occurred only in the arguments of the

arcsin function.

Important lessons are to be obtained from this experiment.

It is quite likely that other users of SIN will have similar

requirements regarding the form of the output. SIN should there-

fore be modified so that FORM can accept simple descriptions of new

substitutions written, say, as a SCHATCHEN and REPLACE rule.

An examination of the eleven problems will indicate that a

great deal of SIN's machinery was involved in solving these

problems. Thus it would appear that a program such as SIN is more

useful than a special purpose integration routine written for

solving just this set of problems. Such a special purpose program

will require so much machinery as to make it uneconomical.

Finally we should note that this experiment points out the need

for further work on methods which transform algebraic integrands.

The method we introduced to force the arcsin result also decreased

the labor involved in the solution and should be normally available

in SIN.

178

Problem

Melntosh Problems

Constraints Answer equivalent to

i) H>0
I

-_ arcsin /_ r

2)

3)

4)

5)

dr

_ r_2Hr2 - _2 - _2
H>0

dr

dr

_r J2He Z - 5 Z ' c2 - 2Kr 4

H 2 > 2_2K

H 2 > 2(_ 2 + e2) K

_'r dr
'2'Hrz - 5 z - 2Kr

K 2 + 2H_ 2 > 0

aresin _ r

i Hr 2 - 52

2-_ arcsin _jR 2 _ 2K 2

aresin
Hr 2 _ (52 + e2) ,

r2JH 2 -2(52+e2)K

arcsin
Kr - _2

r_ K 2 + 2_'

6)

7)

8)

_'r dr
_2Hr z - 5 z - e z - 2Kr

K 2 + 2(52 + c2)H > 0

r dr

r dr

_2Er z - 5 Z _ e2

I
aresin

i__ _2Er 2 " 52
2E

-- Er 2 (52 + c 2)
2E

179

Problems Constraints Answer equivalent to

9)
r dr

j- 4
E2 > 2K_ 2 i 2K r2 - E

arcsln
- 2K_ z

io)

n)

r dr

_2E'r 7 " _Z, "ez _ 2Kr 4

E 2 > 2K(_ 2 + e2)

K > 0

r dr

_2Er 2 - 5 2 - 2Kr

E<0

I 2Kr 2 - E

_arcsin
_E 2 - 2K(2 + '2)

:J2Er 2 - a 2 - 2Kr

2E

I
+n
2HE /r_

2Er + K

arcsin _Z _ 2E_Z

APPENDIX E

AN EXPERIMENT WITH SOLDIER

As an experiment for testing the effectiveness of the

differential equations routines we attempted to solve the review

problems appearing in pages 54-56 of '_pplied Differential Equations"

by Spiegel [60]. This text was chosen for sentimental reasons since

it was the book through which we first learned methods for $o_ing

ordinary differential equations. The methods described in Chapter 6

were mostly influenced by Ince's "Integration of Ordinary Differential

Equations" [27], and Kamke's "Differentialgleichungen" _0]. As

it turns out the methods in Spiegel were quite similar, which is not

a surprising fact. However, there were some differences and these

will be pointed out below.

Briefly, the results of the experiment were as follows: Of the

80 problems in pages 54-56 of the book, 4 involved second and higher

order equations (i.e., y", y'''). These problems were not attempted

since SOLDIER had no machinery to deal with them. Thus the number of

problems actually attempted was 76. Of the 76, SOLDIER satisfactorily

solved 67 problems with an average time of 6.6 seconds. Discounting

the cost incurred by chaining (chaining occurred on 26 of these 66

problems), the average time was 4.3 seconds. Two problems were com-

pletely reduced to integration problems, but were not integrated by

180

181

problemswerenotsolvedat all. Anexaminationof theresult re-

portedbySOLDIERfor oneof theproblems(i.e., 51)indicateda

misprintin thebook.Asbefore,ourtiminginformationis based

onthereportbyCTSSof theexecutiontimeof theprogram.

Thesystemonwhichthis experimentwascarriedouthadthe

followingcharacteristics:SCHATCHEN,SCHVUOS,FORM,REPLACE,SOLDIER,

andall thesolutionmethodsfor differential equationswerecom-

piled. A fewintegrationmethods,especiallytheDerivative-divides

method,werealsocompiled.Therest of theintegrationmethodswere

runinterpretively. Thisaccountedfor anoticeableincreasein

solutiontimewhenoneof theintegrationsubproblemsrequireda

so_lutionmethodin stage2 or 3 of SIN. As was the case in the ex-

periment reported in Appendix C, the 76 problems were attempted in

large batches (about 15 at a time) so that the effects due to garbage

collection were fully considered.

Below we shall describe on the performance of SOLDIER on some

of the more interesting fully solved problems. We shall then describe

each of the 9 problems which it failed to solve fully.

.m.u_

Representative Solved Problems

The largest number of integrations needed to solve one of the

67 problems was 3. This was achieved by problem 69 among others.

(69) (eY+x+3)y ' = I or (eY+x+3)dy - dx = 0

This problem is solved by one of the multiplier methods (Chap-

ter 6, Method 3)

(eY+x+3) = i
_x

57 (-1) =0

1
-_ (1-0) = -1, and -1 is a function of y.

Thus the first integral is

-I dy = -y

The multiplier is e-y resulting in the exact equation

(l+xe-Y+3e-Y)dy - e-Ydx = 0

The second integral is

_e_Ydx = _xe -y ,

t83

and the final integral is

(l+3e-Y)dY = y-3e -y

The solution reported by SOLDIER is thus

Co = -xe-Y-3e-Y+y

The solution in Spiegel is

x = yeY-3+ce y.

This solution is equivalent to the one obtained by SOLDIER.

This problem was solved in 5.2 seconds.

The most complex solution was obtained as a result to prob-

lem 73.

(73) d_.y_.: x+3v
dx x-3y

This homogeneous problem required the solution of

du

The final solution given by SOLDIER was

2

The solution in Spiegel was

(x2+2xy+3y 2) = 2_2-arctan _/2 J + clog e

This problem was solved in 15.3 seconds and required a chain

to the rational function package.

The problem in which we discovered a misprint in the book's

solution was problem 51.

(51) y' = 3x+2y or y'-3x-2y = 0

The problem is linear (Chapter b, Method i) and the first

integral required is

-2dx = -2x

The next integral is

3 3; _3xe-_Xdx.(_, _x)e-_X

The final answer given by SOLDIER was

Co = ye + + _ e -2x

185

The book's solution was

-2x 3 3

y=c e -_x- _

This solution differed from SOLDIER's in that the sign of

-2x .
the exponent of e is wrong.

The answer was obtained in 9.0 seconds and required a chain

to solve the second integral.

The fastest solution time was obtained for problem 5.

(5) (3-y)dx + 2xdy = O, y(1) = I

This problem is also linear.

The first integral is

i
-2 dx =-_ logeX

! logeX I
next integral (after simplifying e-I'2 =f-) isThe

vx

3 3
dx= ",/x

The final result is

186

The book's solution is

(3-y) 2 ffi4x

which is equivalent ot SOLDIER's except that the constant of

integration was determined by using the initial condition.

This problem was solved in 0.8 seconds.

187

The Nine Unsolved Problems

Problems 48 and 75 were not solved primarily because SOLDIER

had no machinery for factoring them. In these two

2 2

(48) dq : .p..ep -q
dp q

(75) e2X'Ydy + eY-2Xdy = 0

problems what is needed is to recognize that ea+b a b= e e . A

powerful factoring routine would have yielded the result that both

of these problems are separable.

Problem 50 is also recognized to be separable

(5O) (x+xcosy)dy - (y+siny)dx : 0

if one factors x+xcosy. When SOLDIER solved this problem it utilized

one of the multiplier methods.

The difficulties due to the lack of a general factoring or

division routine which was pointed out in Chapter 6 is one of the

outstanding problems which must be solved in order to achieve a

powerful routine for solving differential equations. The rational

function package which is not directly utilized by SOLDIER can

factor polynomials and some more general expressions (e.g., x+xcosy

J.88

could be factored by it), however, it must be extended in order to

recognize factorizations involving exponentials and logs.

A similar difficulty to factoring faced the program in

problem 65.

(65) xy' + ylogeX = ylogey + y

This problem is easily solved by the homogeneous method if it

is first transformed into

xy' - yl°ge x = y

SOLDIER does not possess enough machinery to realize that this

transformation can be effected. Method 8 of Chapter 6 which normally

would have solved problem 65 without the log transformation failed

because SCHVUOS could not simplify a quotient which arose in the

course of the solution.

Problems 47 and 64 were not solved because SOLDIER lacked a

method given in Spiegel.

(47) xdy - ydx = x2ydy

(64) xdy - ydx = 2x2y2dy

Spiegel suggested that one should watch out for frequently

occurring combinations such as xdy+ydx or xdy-ydx. He gave a method

which deals with some of these cases. In 47 he points out that by

189

dividing by x 2 one obtains the derivative of _ on the left hand

side and ydy on the right hand side. In 64 one obtains 2y2dy on the

right hand side and once again the derivative of _ on the left
x

hand side. SOLDIER lacked this particular method and was unable to

solve these problems. Once again Method 8 of Chapter 6 was applicable

and did not find a solution due to problems in division.

Another method lacking in the program is pointed out by prob-

lem 57.

ds i

(57) dt s+t+l

Here the linear substitution u(t) = s+t+l would have left a

separable equation. Also a reversal of the independent variable

followed by multiplying out the denominator would have left the

equation

dt
m= s+t+l
ds

which is linear. The method of multiplying out the denominator is

also useful in problem 17.

(17) y' = 2xy'y4

3x 2

SOLDIER solved 17 by dividing through the denominator and using the

Bernoulli method. By multiplying out the denominator, the multiplier

190

methodwouldsolvetheproblem.

Problem22wasnotsolvedbySOLDIERbecausethealmost-

linearmethodis notpowerfulenough.

(22) 2 2(tany - tany cos x)dx - xsec y dy = 0

The substitution u(x)ztan(y) results in the equation

_-u2cos x)dx - x du = 0

• Q

which is Bernoulli. However, the almost-llnear method checks only

for the possibility that the resulting equation is linear and com-

pletely misses the possibility that it is Bernoulli.

Finally, two problems, 56 and 74, were not completely solved

because SIN did not have powerful enough machinery.

dl

(56) d-_ + 31 = 10sin t

(74) y'cos x = y - sin2x

In 56 the linear method generates the subproblem

-lOe3tsin t dt

without the Edge heuristic, SIN cannot integrate this problem.

There was not enough room in the system to include the Edge heuristic

(only 1500 words were left in free storage), so SIN failed to

191

integratethis problem.

SINfailed to handlethe integrationproblemsneededin 74

becauseit doesnotcurrentlypossessenoughmachineryfor dealing
withsin(2x)andcos(x)in thesameintegrand.Ashasbeenindi-

catedin Chapter4 somemachineryfor just this situationwas

designedbutnot fully implemented.

192

Modifications to SOLDIER

Following the experiment reported above we made two changes

to the methods employed by SOLDIER. First we added a simple factori-

zation routine to Method 8 of Chapter 6. with this routine Method 8

was able to solve problems 47, 64, and 65, as expected.

In addition we added an indicator to SCHVUOS. When this

a+b a b
indicator was on, SCHVUOS executed the rule e _ e e . This

indicator was turned on in running Method 2 of Chapter 6 (Separable).

Thus, problems 48 and 75 were solved as well. The use of indicators

illustrates the approach toward simplification programs we had out-

lined in Chapter 3. In that chapter we said that simplifiers should

be considered as black boxes with strings attached. When a decision

has to be made inside the simplification program, it can check to

see whether it had been given an instruction regarding the choice to

be made.

These changes must be considered as stop-gap measures and not

as solutions to the factoring problems which still remain in SOLDIER.

_P_D_ F

LISTINGS

The listings of SIN and SOLDIER given below were produced by a LISP

program written by Diffie of the MAT}{LAB project and modified by us.

Listings of LISP programs are frequently printed by using the internal

representation of the program. The listings of programs written in most

other languages usually bear a close correspondence to the input form of

the program. This need not be the case for LISP programs. The routine

Edge which was not listed using Diffie's program is presented last. The

listing of this routine may be used to guage the effect of Diffie's pro-

gram.

The listings of two recent LISP programs (i.e., Martin [37], Nor-

ton [47]) are also available. One can use these listings to compare

different styles of LISP programming. Norton accentuates the use of the

PROG feature and his programs thus have a FO_RAN-Iike appearance. Mar-

tin's style is richer and leans toward greater use of "pure" LISP. Our

style is intermediate to these two styles.

193

194

SCHATCHEN

DEFINE

(({SCHATChEN M2)
(M2 (LAMBDA' (E P SPLIST)

(PROG (ANS)

(RETURN (COND ((NULL (M1 E P)) NIL)

((NULL ANS} T)

(TANS))))))

(MI (LAMBDA (E P)

(COND ((EQUAL E P) T)

((ATOM P) NILI
((ATOM (CAR P))

(CONO flOE (EQ (CAR P) (QUOTE PLUS))

(EQ (CAR P) (QUOTE TIMES)))

(LOOPP E P))

((EQ (CAR P) (QUOTE EXPT)) (ZEPOW E P))

((EQ (CAR E) (CAR P)) (EACHP E P))

((OP [CAR P)) NIL)

((EQ (CAR P) (QUOTE COEFFT))

(COEFFPDRT E P (QUOTE (TIMES I T))))

((EQ (CAR P) (QUOTE COEFFPT)) (CDEFFPT E P T))

((EQ (CAR P) (QUOTE COEFFP))

(COEFFPORT E P (QUOTE (PLUS O T))})

{(EQ (CAR P) (QUOTE COEFFTT))

(COEFFTT E (CADR P) T (QUOTE TIMES)))

((EQ (CAR P) (QUOTE COEFFPP))
(COEFFTT E (CADR P) T (QUOTE PLUS)))

((EQ (CAR P) (QUOTE DVCOE)) (DVCOE E P T))

((EQ (CAR P) (QUOTE ZEPOW)) (ZEPOW E P))
((AND (SETQ ANS (CONS NIL ANS)) (TESTA P E NIL))

(RESTOREI))

{T (RESTORE})))

((ATOM (CAAR P))

(COND ((ATOM E) NIL)

((PROG2 (SETQ ANS (CONS NIL ANS))

(TESTA (CAR P) (CAR E) El)

(COND ((0R (EQ (CAR E) (QUOTE PLUS))

(EQ (CAR E) (QUOTE TIMES)))

(COND ({LOOPP E
(CONS (CAR E)

(CDR P)))

{RESTOREI))

{T (RESTORE))))

((AND (SETQ P (CONS (CAR E) (CDR P)))

(EACHP E P))

(RESTOREI))

(T (RESTORE))))

IT (RESTORE))))

iT NIL))))))

DEFINE
({(LDOPP {LAMBDA [E P)

(PROG (X Z EE)

(SETQ EE

(COND ((NOT (EQ ICAR E) (CAR P)))

(LIST (CAR P) E))

195

(TE)))

(SETQ Z P)

(SETQ ANS (CONS NIL ANSI)
LOOP

(SETQ Z (CDR Z))

(COND ((NULL Z)

(RETURN (COND ((NULL (CDR EE)) (RESTORE1))

(T (RESTORE))))))
(SETQ X EE)

L5

(COND ((NULL (CDR XI) (GO L17))

((OPI (CAAR Zl) (GO LIOI)
((EQ (CAAR Z) (QUOTE EXPT)) (GO LI4))

((MI (CADR X) (CAR Z)) (GO L2)))

L8

(SETQ X (CDR X))

(GO L5)
L2

(SETQ ANS (CONS (CONS X (CDR X)) ANSI)

(RPLACD X (CODR X) l
(GO LOOP)

L17

(COND ((NOT (EQ (CAR P) (QUOTE PLUS))) (GO LI8))
((MI 0 (CAR Z)) (GO LOOP)))

L19

(RETURN (RESTORE))

LIB

(COND ((AND (EQ (CAR P) (QUOTE TIMES))

(MI I (CAR ZI))

(GO LOOP))

(T (RETURN (RESTORE))))

LIO

LII

L12

(COND

(COND

(COND

(EQ (CAAR Z) (QUOTE

(EQ (CAAR Z) (QUOTE
(EQ (CAAR Z) (QUOTE
(EQ (CAAR ZJ (QUOTE

(EQ (CAAR Z) (QUOTE

(EQ (CAAR Z) (QUOTE

(EQ (CAAR Z) (QUOTE
T (GO L15)))

((COEFFPORT EE (CAR Z

(GO LOOP))

(T (RETURN (RESTORE))

((COEFFPORT EE (CAR Z
(GO LOOP))

(T (RETURN (RESTORE))

COEFFT)) (GO LII)_
COEFFP)) (GO LI2))

COEFFPT)) (GO tI3))

COEFFTT)) (GO L16))

COEFFPP)) (GO L47))

ZEPOW)) (GO LI4))

DVCOE)) (GO L43))

) (QUOTE (TIMES I NIL)))

))

) (QUOTE (PLUS 0 NIL)))

))

L47

LI3

(COND ((COEFFPT EE (CAR Z) NIL) (GO LOOP))

IT (RETURN (RESTOREI)))
L14

(COND ((ZEPOW (CADR X) (CAR Z)) (GO L2)) (T (GO L8)))
LI5

(COND ((LOOP EE (CDAR Z)) (GO LOOP))

(T (RETURN (RESTORE))))
LIb

(COND ((COEFFTT EE (CADAR Z) NIL (QUOTE TIMES))

(GO LOOP))

(T (RETURN (RESTOREI)))

196

L43

DEFINE

(((COEFFPORT

(LAMBDA

(E P IND)

(PROG {X Z EEl

(COND ({COEFFTT EE (CAOAR Z) NIL (QUOTE PLUS))
(GO LOOP))

(T (RETURN (RESTORE))))

(CONO ((DVCOE (CADR X) (CAR Z) NIL) (GO LOOP))
(T (GO L8))))))))

(SETQ ANS (CONS NIL ANSI)
(SETQ EE E)
(COND

((EQ (CAR IND) (QUOTE PLUS)) (GO L30))
((EQ (CAR E) (QUOTE PLUS)) (GO L31))
((EQ (CAR El (QUOTE TIMES)) (GO L32)))

(SETQ EE (LIST (QUOTE TIMES) E))
IGO L2)

L32
(COND ((CADDR IND) (GO L2)) (T (GO LI)))

L31

(COND

((NOT (CADDR IND)) (GO Ll))

((NULL (CDDR E)) (GO L2))

IT (GO L20)))
L30

(COND ((EQ (CAR E) (QUOTE PLUS)) (GO L35)))

(SETQ EE (LIST (QUOTE PLUS) E))
(GO L2)

L35

(CONO
((NULL (CDDR E)) (GO L2))

(lEO (CAR IND) (QUOTE PLUS)) (GO L2))

((CADOR IND) (GO L2))
(T (GO LI)))

L2
(COND ((EQUAL E O) (GO LT)))

(SETQ Z (CDR PII
LOOP1

(SETQ Z (CDR Z))

(COND ((NULL Z) (GO LT)))
(SETQ x EE)

L6

(CONO
((NULL (CDR X)) (GO LIO))
((EQ (CAAR Z) (QUOTE COEFFTT)) (GO L16))

(lEO (CAAR Z) (QUOTE COEFFPP)) (GO LIT))

((Ml (CADR X) (CAR Z)) (GO LS)))

(SETQ X (CDR X))

{GO L6)

L5

(SETQ ANS (CONS (CONS X (CDR X)) ANSI)

(RPLACD X (CDOR X))

(GO LOOPI)

LI7

(COND ((COEFFTT EE (CADAR Z) NIL (QUOTE PLUS)) (GO LOOPI)I)

(GO L7)

L16
(COND ((COEFFTT EE (CADAR Z) NIL (QUOTE TIMES)) (GO LOOPI)))

L7

197

(COND

({NULL (CDR EE))

(RETURN (COND ((TESTA (CADR P) (CADR IND) NILI

(COND ((CADDR IND) (RESTOREI)) (T (RESTORE2)|))
(T (RESTORE)))))

((NULL (CDDR EE))

(RETURN (COND ((TESTA (CADR P) (CADR EE) NIL)

(PROG2 (SETQ ANS

{CONS (CONS EE (CDR EE)) ANS))

[PROG2 {RPLACD EE (CDDR EE))
(COND ((CADDR IND)

(RESTOREZ))

(T (RESTORE2))))))
(T (RESTORE))))))

L69

(SETQ X (COPY1 EE))
(COND ((NULL (TESTA (CADR P) X NIL)) (RETURN (RESTORE)))

({CADDR IND) (RETURN (RESTOREI))))

(COND ((AND (CDDR E) (EQ (CAR IND) (QUOTE PLUS)))

(PROG2 (SETQ ANS (CONS (CONS EE (CDR EE)) ANS)) (RPLACO EE NIL))))

(RETURN (RESTORE2))

LlO

(COND ((NULL (MI (CADR [ND) (CAR Z))) (RETURN (RESTORE))))
(GO LOOPI)

L20
(RETURN (RESTORE))

LI

(SETQ X EE)

L3

(COND ((NULL (CDR X)) (GO L4))

((COEFFPORT (CADR X) P (LIST (EAR IND) (CADR IND) Ill (GO LI2)))

(SETQ X (COR X))

(GO L3)
L12

(SETQ ANS (CONS (CONS X (CDR X)) ANS))

(RPLACO X (CDDR X))

(RETURN (RESTORE2))

L4

{COND ((NULL (MI (CADR IND) P)) (RETURN {RESTORE))))

(RETURN (RESTORE2)))))))
DEFINE

(((COEFFPT (LAMBDA (E P IND)
(PROG (Z ZZ)

(SETQ Z
(COND ((EQ (CAR E) (QUOTE PLUSI) El

IT (LIST (QUOTE PLUS) E))))

(SETQ ANS (CONS NIL ANS))

(SETQ ZZ (CONS (QUOTE COEFFT) (CDR P)))

L19

(COND ((NULL (CDR Z)) (GO LZI))

((NULL IN1 (CADR Z) ZZ)) (GO L20)))
L22

(SETQ ANS (CONS (CONS Z (COR ZI) ANS))

(RPLACD Z (CDDR Z))
(GO LI9)

L2O

(SETQ Z (CDR Z))
(GO L[9)

L2I

(SETQ Z
(FINDIT (COND ((EQ (CAADR P) (QUOTE VAR*))

i96

(CAR (CDDADR P)))
(T (CAADR P))))(

(COND (INULL Z)
(RETURN (COND ((NULL (TESTA (CADR P)

O
NIL))

(RESTORE))
(IND (RESTOREI](
(T (PROG2 (RESTORE2) 0(()))

((NULL (CDR Z))

(RETURN (COND ((NULL (TESTA (CADR P(

(CAR Z)

NIL (J

(RESTORED l

(IND (RESTORE())

(T (PROG2 (RESTORE2)

(CAR Z())()))
(SETQ Z (SINPPLUS Z))
(COND ((NULL (TESTA (CADR P) Z (QUOTE COEFFPT)))

(RETURN (RESTORED((

(IND (RETURN (RESTOREI))()

(RETURN (PROG2 (RESTORE2) Z))))(

(EACHP (LAMBDA (E P)

(PROG NIL

(COND ((NOT (EQUAL (LENGTH E((LENGTH P))(
(RETURN NIL)))

(SETQ ANS (CONS NIL ANS))
EACHPL

(SETQ E (CDR E)I

(COND ((NULL E) (RETURN (RESTORE(())

((NULL (MI (CAR E((CADR P())

(RETURN (RESTORED) })

(SETQ P (CDR P))

(GO EACHPL) ())

(ZEPOW (LAMBDA (E P)

(PROG NIL

(SETQ ANS (CONS NIL ANS))

(COND ((ATOM E) (GO L6))(

L5

(COND ((NOT (EQ (CAR E) (QUOTE EXPT))) (GO LB])
((NOT (MI (CADR E) (CADR P()) (GO LB])

((NOT (MI (CADDR E) (CADDR P())

(RETURN (RESTORE)()1

L9

(RETURN (RESTOREI)(

LIO

(COND ((AND (NOT (Ml 0 (CAODR P)))

(NOT (MZ 1 (CADR P))()

(RETURN (RESTORED()(

(GO t9)

L8

(COND ((NOT (MI E (CADR P))) (RETURN (RESTOREI))

((NOT (MI 1 {CADDR P))) (RETURN (RESTORE))()

IGO L9)

L7

(COND ((NOT (MI 0 (CADR P))) (RETURN (RESTORE}()]

(GO Lg(

L6

(COND ((EQP E I) (GO LIO))

((EQP E O) (GO LT))

(T (GO L8))))))

199

(LOOP (LANBDA (E LP)
(PROG (Z Y X)

(SETQ ANS (CONS (QUOTE *LOOPt (CONS NIL ANSI))
(SETQ X LP)

L5

(SETQ Z E)
L6

(COND ((NULL (N1 (CADR Z) (CAR XI)) (GO LIOI))
(SETQ Y (CONS (LIST X Z (CDR Z)) Y))
(SETQ ANS (CONS (CONS Z (CDR Z)) ANSI)
(RPLACD Z (CODR Z))
(SETQ X (CDR X))
(COND ((NULL X) (RETURN (RESTORE2))))

(SETQ ANS (CONS (QUOTE QLOOP) ANS))
(GO t5)

LIO
(SETQ Z (COR Z))

(COND ((NOT (NULL (COR Z))) (GO L6))
((EQUAL X LP) (RETURN (RESTORE|)))

L8

(SETQ X (CAAR Y))

(RPLACD (CADAR Y) (CADDAR Y))

(SETQ Z (CADOAR Y))

(SETQ Y (COR Y))

(SETQ ANS (CDR ANSI)
(RESTORE3)
(GO L6I)))))

DEFINE

(((RESTORE3 (LAMBDA NIL

(PROG NIL

LI

(COND ((NULL ANSI (ERROR (QUOTE RESTORE3))(

((NULL (CAR ANSI) (ERROR {QUOTE RESTORE3)))

((EQ (CAR ANSI (QUOTE ILOOPI) (RETURN NIL)|

((NOT (ATOM (CAAR ANS)))

(RPLACD (CAAR ANSI (CDAR ANSI)))

(SETQ ANS (CDR ANSI)

(GO LI))11

{RESTORE (LAMBDA NIL

(PROG (Y)

(SETQ Y ANSI

L1

(CONO ((NULL Y) (RETURN NIL}I

((EQ (CAR Y) (QUOTE *LOOP))
(PROG2 (RPLACA Y (CADR Y))

(RPLACD Y (CDOR Y)_))

((NULL (CAR Y))

(RETURN (PROG2 (SETQ ANS (CDR Y)) NIL)))

((NOT (ATOM (CAAR Y)))

(RPLACD (CAAR Y) (CDAR Y))))

(SETQ Y (CDR Y))
(GO LI))))

(RESTORE) (LAMBDA NIL

(PROG (Y)

L2

[SETQ Y ANSI

{CONO ((NULL ANSI (RETURN T))

((NULL (CAR ANSI)

(RETURN (PROG2 (SETQ ANS (CDR ANSI) T)))

((NOT (ATOM (CAAR ANSI)) (GO L3)I)

LZ

200

(COND ((NULL (COR YI) (RETURN Tll

((NULL (CAOR YI)
(RETURN (PROG2 (RPLACD Y (CODR YI) T)) I

((NOT (ATOM {CAADR Y)))
(PROG2 (RPLACD (CAA_R Y) (CDADR Y))

(RPLACD Y (COOR Y))))
IT (SETQ Y (CDR YIII)

(GO LI)
L3

(RPLACD (CAAR ANSI (CDAR ANSI)

(SETQ ANS (CDR ANSI)
(GO LZ))))

(RESTORE2 (LANBDA NIL
(PROG (Y)

(SETQ YANS)
(COND ((NULL ANSI (RETURN T))

((NULL (CAR ANS))
(RETURN (PROG2 (SETQ ANS (CDR ANS)) T))))

LI

(COND ((NULL (CDR Y)) (RETURN T))

(_EQ (CADR Y) (QUOTE *LOOP))
(RPLACD Y (CDDR Y)))

((NULL (CADR Y))
(RETURN (PROG2 (RPLACD Y (CDDR Y)) T)) I)

(SETQ Y (CDR YI)

(GO Lll Ill
(TESTA* (LAMBDA (ALA EXP LOC)

(COND ((COND ((EQ (CADR ALA) (QUOTE FREE)) (FREE EXP))
((EQ (CADR ALA) (QUOTE NUNBERPII

(NUMBERP EXP))

((EQ (CADR ALA) (QUOTE TRUEI) T)

(T (APPLY (CADR ALA)

(FINDTHEM (CDDR ALA))

(ALIST))))

(COND ((NOT (MEMBER (CAR ALA) SPLIST))

(PROG2 (SETQ ANS

ICONS ICONS (CAR ALA) EXP)

ANS))

T))

(T T) 1)
(T NIL))))

(FINDTHEM (LAMBDA (ARGSI (FINDTI ARGS ANS (CONS EXP NILI)))

(FINDTL (LAMBDA (X Y Z)

(COND ((NULL X) Z)

((NULL Y)

(FINDTI (CDR X)

ANS

(NCONC Z (LIST (EVAL (CAR X) (ALIST))))))

((EQ (CAAR Y) (CAR Xl)

(FINDTI (CDR X) ANS (NCONC Z (CONS (CDAR Y) NIL)I))
(T (FINDTI X (CDR Y) Zl)))I))

DEFINE

(((DP (LAMBDA (FN)

(MEMBER FN

(QUOTE (PLUS TIMES

EXPT

SIN

COS

TAN

LOG

SEC

201

INTEGRAL

ARCSIN

ARCCOS

ARCTAN)))))

(COPY) (LAMBDA (A) {COND ((NULL A) NIL) iT (CONS (CAR A) (COPYI (COR A)))))))
(FINDIT (LAMBDA (A)

(PROG (Y Z)

(SETQ Y {CONS NIL ANS))
LI

(COND {{NULL (CDR Y)) {RETURN Z))

((NULL (CAOR Y)) {RETURN Z))
((EQ (CAAOR Y) A)

{PROG2 {SETQ Z (NCONC Z {LIST (CDADR Y))))

(RPL_CD Y (CDDR Y))))

(T {SETQ Y (CDR Y)}))
(GO L1))))

(FREE {LAMBDA (A)

(COND ({ATOM A) {NOT (EQ A VAR)))

(T (AND {FREE (CAR A)) {FREE (COR A)))))))

{DPI (LAMBDA (A)

{MEMBER A

{QUOTE (COEFFPT COEFFP

COEFFT

ZEPOW

COEFFPP
COEFFTT
LOOP ill))

(COEFFTT (LAMBDA (EXP PAT IND OPINDI

(PROG (RES Z)

{SETQ ANS {CONS NIL ANS))

L1

(COND

{SETQ
(SETQ

(CONO

({AND INO (NOT lEO {CAR EXP) OPIND)))

(SETQ EXP (LIST OPIND EXP))))

Z EXP)
SPLIST {CONS (CAR PAT) SPLIST))

{(NULL (COR Z)) (GO L3))

((TESTA PAT (CADR Z) NIL) {GO L2)))

(SETQ Z (CDR Z))

{GO LI)

L2

{SET(: ANS (CONS {CONS Z (CDR Z)) ANS))

{SETQ RES (CONS (CADR Z| RES))

(RPLACD Z (CDOR Z))

(GO LI|
L3

(SETQ SPLIST (COR SPLIST))
(COND IRES (GO L4I)

((NOT {TESTA PAT

(COND ((EQ OPIND

(QUOTE PLUS))
0)

(T 1))
NIL))

{RETURN (RESTORE}))1

(CONO (IND (RETURN {RESTORE))))

(T (RETURN (RESTORE2))))
L4

(SETQ RES
ICOND ((CDR RES) (CONS OPINO RES))

(T (CAR RES))))

(SETQ ANS (CONS (CONS {CAR PAT) (SIMP RES)) ANS))

202

(COND (INO (RETURN (RESTOREI)))

IT (RETURN (RESTORE2)))))))

(TESTA

(LAMBDA (ALA EXP B)

(PROG (Y Z FUNC VAL)

(COND ((NOT (EQ (CAR ALA) (QUOTE VAR*)))

(RETURN (TESTAe ALA EXP NIL)) II

(SETQ Z (CADR ALA))

(SETQ ALA (CDDR ALA))

LOOP

(COND ((NULL Z)

(RETURN (PROG2 (SETQ Y

(COND (VAL (M! EXP Y))

(T (TESTA* ALA

EXP

NIL))))
(COND ((NULL Y) NIL)

(FUNC (SET (CAR ALA) EXP))

(T Y)))))

({EQ (CAR Z) (QUOTE SET)) (SETQ FUNC T))

((EQ (CAR Z) (QUOTE UVAR))

(COND {(SETQ Y

(CDR (SASSOC (CAR ALA)

ANS

(QUOTE NILL) 7))

(SETQ VAL T))
(T NIL))l

((AND (EQ B (QUOTE COEFFPT))
(EQ (CAAR Z) (QUOTE COEFFPTI))

(SETQ ALA (CADAR Z))))
(SETQ Z (CDR Z))

(GO LOOP))))))

SCHVUOSt REPLACE_ DIFF

DEFINE

(((SIMPPLUS

(LAMBDA

(EXP)

(PROG (Y INO Z W ANS A B AI)

(SETQ A O)

B

(COND ((NULL EXP) (GO AA)))

(SETQ Y (SIMP (CAR EXP)))
(COND

((EQ (CAR Y) (QUOTE PLUS)) (GO C))

((NUMBERP Y) (SETQ A (PLUS Y A)))

(T (SETQ Z (CONS Y Z))))

BB

(SETQ EXP (CDR EXP))
(GO B)

C

(COND

((NUMBERP (CADR Y))

(PROG2 (SETQ Z (APPEND (CDDR YI Z)) (SETQ A (PLUS (CADR Y) A))))

(T (SETQ Z (APPEND (COR Y) Z))l)
(GO 8B)

AA
(COND

203

{(NULL Z] (GO Ell]

((NULL (CDR Z)) (GO EEl)

((EQ (CAAR Z) (QUOTE TIMES)) (GO E]))
H

(SETQ A1 I)

(SETQ IND T)

(SETQ B (CAR Z)]

(GO FF)

E

(COND ((NOT (NUMBERP (CADAR Z)]) (GO P]))
(SETQ A1 (CADAR Z])

(COND ((NULL (CDDDAR Z)] (GO G]]I
(SETQ B (CDDAR Z))

(SETQ IND NIL]

(GO FF)
P

(SETQ AI I)

{SETQ B (CDAR Z))

(SETQ IND NIL)

(GO FF)

G

(SETQ B {CADDAR Z))

(SETQ IND T)

FF

(SETQ Z (CONS (QUOTE PLUS] (COR Z)))

(SETQ Y

(COND

(IND (COEFEPT Z (LIST NIL (QUOTE (C NUMBERP)I B) NIL))

{T (COEFFPT Z (CONS NIL {CONS (QUOTE (C NUMBERP)) B)] NIL{)))
(SETQ Y (PLUS AI Y))
(COND

((ZEROP Y] T)
((ONEP Y]

(SETQ W (CONS (COND lIND B) (T (CONS (QUOTE TIMES) B){) N)) }

(IND (SETQ W (CONS (LIST (QUOTE TIMES] Y B) W)))

(T (SETQ W {CONS ICONS (QUOTE TIMES) (CONS Y B)) W))))
(SETQ Z (CDR Z])

(GO AA)

EE

(SETQ W ICONS (CAR Z) W))

E1

(SETQ W (COND ({ZEROP A) W} (T (CONS A W)I))
(RESTORE)

(COND

((NULL W) (RETURN 0))

({NULL (CDR W)) {RETURN (CAR WI))

(T {RETURN {CONS {QUOTE PLUS} g))))))))

DEFINE

(((SIMPTIMES

(LAM6DA

(EXP)

(PROG (Y DIV Z W A At B ZZ)

(SETQ A 1)
B

(COND {(NULL EXPI (GO START)))

(SETQ Y (SIMP (CAR EXP)))

(COND ({EQ (CAR Y) (QUOTE TIMES})

(COND ((NUMBERP (CADR Y))

(PRDG2 (SETQ A (TIMES (CADR Y) A))

(SETQ Z (APPEND (CDDR Y) Z))])

(T (SETQ Z (APPEND (CDR YI Z)))))

IIAND (NUMBERP Y) (ZEROP Y)) (RETURN 0))

((NUMBERP Y) (SETQ A (TIMES Y A)))

(T (SETQ Z (CONS Y Z))))

(SETQ EXP (CDR EXP))

(GO B)

START

(COND ((AND IEQ (CAAR Z) (QUOTE PLUS))
(NULL (CDR Z))

(NULL W)

(NOT (ONEP A)))

(RETURN (PROG23 (CSETQ SIMPIND T)

(TIMESLOOP A (CDAR Z))

(CSETQ SIMPIND NIL)))))

(COND ((NULL Z) (GO El))
((NULL (CDR Z)) (GO EE))

(EXPTSUM (RETURN (CONS (QUOTE TIMES) (CONS A Z))))

((EQ (CAAR Z) (QUOTE EXPT)I (GO G)))

(SETQ A! 1)

(SETQ B ICAR Z))
(GO FF)

G
(SET_ B (CADAR Z))

(SETQ AI
ICOND ((NUMBERP (CADDAR Z)) (CADDAR Z))

(T (CONS (CADDAR Z) NIL))))

FF

(SETQ ZZ Z)

K

(COND ((EQ (CAADR ZZ) (QUOTE EXPT)) (GO HI)

((M2 (CADR ZZ) B NIL) (GO I)))

(COND ((AND _UOTIND

(EQ (CAR B) (QUOTE PLUSI)

(EQ (CAADR ZZ) (QUOTE PLUSI)

(SETQ Y (MATCHSUM1 B (CADR ZZ))) I

(GO DIVI)))

JK

(SET_ ZZ (CDR ZZ))

J

(COND ((COR ZZ) (GO K)))

(GO M)

H

(COND ((M2 (CADADR ZZ) B NIL) (GO L)))

(COND ((AND QUOTIND

(EQ {CAR B) (QUOTE PLUS))

(EQ (CAR (CADADR ZZ)) (QUOTE PLUSI)

(SETQ Y (MATCHSUM1 B (CADADR ZZ))))

{GD DIV2)))

(GO JK)

JJ
(RPLACD ZZ (CDDR ZZ))

(GO J)

I
(SETQ A} (COND ((NUMBERP AI) (ADD(A})) (T (CONS I AI))))

(GO JJ)

L

(SETQ A}
(CUND ((AND (NUMBERP AT) (NUMBERP (CADDAR (COR ZZI)))

{PLUS A((CADDAR (CDR ZZ))))

(T (CONS (CADDAR (CDR ZZ))

(COND ((ATOM AI) (LIST At)) (T AI)))}))

205

IGO JJ)
M

(SETQ AI {COND ((NUMBERP AI) All (T (SIMPPLUS AIII])
{SETQ W

(COND {(NUMBERP A1)

(COND ({ZEROP AI) W)

{(ONEP AI) ICONS B W))

IT (CONS (LIST (QUOTE EXPT) B AI) W))))

(T (CONS ILIST (QUOTE EXPT) B All W))))
(SETQ Z (CDR Z))

(GO START)

EE

(SETQ W ICONS (CAR Z) W))

EI

(SETQ A

[COND (INULL W) A]

IINULL (COR W])

ICOND (IONEP A) {CAR W))

(T ILIST (QUOTE TIMES) A ICAR W)))))

I(ONEP A) ICONS {QUOTE TIMES) W])

(T {CONS (QUOTE TIMES) {CONS A W)))))
(COND (INULL DIV) {RETURN A))

{T {RETURN (SIMPTIMES {LIST ICONS [QUOTE TIMES) OIV) A)))))
DIV1

(COND (lAND (NUMBERP Y) {SETQ A {TIMES A Y))) (GO I))

((SETQ DIV {CONS Y DIVI) (GO I)) }
DIV2

(SETQ DIV {CONS ISIMPEXPT {LIST Y {CAR (CDDADR ZZ)I)) DIV)I
IGO L))))))

DEFINE

((ISIMPEXPT

{LAMBDA

(EXP)

IPROS (A B)

ISETQ B {SIMP {CADR EXP}))

(SET_ A ISIMP (CAR EXP)))
(COND

((EQP A O) {RETURN 01)
(IAND

{EQ ICAR A) {QUOTE EXPT))

{SETQ B {SIMPTIMES {LIST B (CADDR A))))

[SETQ A (CAOR A))
NIL)

NIL)

([EQP B O) {RETURN I))

{[EQP B I) {RETURN A_)

[IEQP A I] (RETURN i])

((AND INUMBERP A) (NUMBERP 8])

{RETURN [COND

[{NOT EXPTIND) {EXPT A B))

IIAND IFIXP 8) (GREATERP B -I)) (EXPT A B))

(T ILISI {QUOTE EXPT) A 8))]))

[{EQ ICAR A) {QUOTE TIMES))

{RETURN {CONS {QUOTE TIMES) {EXPTLOOP ICDR A)))))

IIAND EXPTSUM IEO ICAR B) {QUOTE PLUS)))

{RETURN

ICONS
{_UOTE TIMES)

[MAPLIST (CDR B)

{FUNCTION {LAMBDA (C) {SIMPEXPT (LIST A {CAR C))]))])))

206

({NOT {ATOM B))

(RETURN

(PROG (W}

{RETURN

(COND

((NOT {SETQ W

(M2

(QUOTE (PLUS (COEFFT (C TRUEI)

(LOG (BI TRUED (A TRUE)})

(COEFFP {E TRUE)}))

NIL)))

{LIST {QUOTE EXPT) A B))

{(NOT (EQUAL A {SUBLIS W (QUOTE BI)))}

{LIST (QUOTE EXPT) A B))

(T

(SIMPTIMES (LIST

(SIMPEXPT {LIST (SUBLIS W (QUOTE A))

(SUBLIS W (QUOTE C))))

(SIMPEXPT {LIST A (SUBLIS W (QUOTE E)))))))}}))))

{RETURN {LIST (QUOTE EXPT) A B)))))

{EXPTLUOP

(L_MBDA

(A)

(PROG23

{CSETQ SIMPIND T)

(MAPLIST A (FUNCTION (LAMBDA (C) (SIMPEXPT (LIST {CAR C) B}})))

{CSET_ SIMPINO NIL) }))

{SIMP

(LAMBUA

(EXP)

(PROG (Z)

(RETURN

(COND

{{ATOM EXP) EXP)

(SIMPIND EXP)

({NULL (SETQ Z {GET (CAR EXP) {QUOTE SIMP))))

{CONS {CAR EXP)

(MAPLIST {CDR EXP) {FUNCTION (LAMBDA {C} (SIMP (CAR C))}))))

((E_ Z (QUOTE SIMPTIMES)) (SIMPTIMES (CDR EXP))}

((EQ Z (QUOTE SIMPPLUS)) (SIMPPLUS (CDR EXP)))

((EQ Z {QUOTE SIMPEXPT)) {SIPPEXPT (CDR EXP)))

(T {APPLY Z (LIST (COR EXP)) (ALIST}})))})I))

ATTRI_

(vLUS (SIMP SIMPPLUS))

ATTRIB

{TIMES {SIMP SIMPTIMES))

ATTRIb

(_XPT (SIMP SIMPEXPT})

DEFINE

{{(SIMPLOG

(LA_6DA

(A)

(PROG (B)

{SETW 6 {SIMP (CADR A)))

(SETQ A (SIMP (CAR A))I

{COND {(bQUAL A B) {RETURN I))

207

((EQP B I) (RETURN 0))

((EQ (CAR B) IQUOTE EXPT))

(CONO ((EQUAL A (CADR B)I (RETURN (CADDR B)))

(T (RETURN (LIST (QUOTE TIMES)

(CADDR BI

(LIST (QUOTE LOG) A (CADR B([)IT))

(T (RETURN (LIST (QUOTE LOG| _ Bill))IT))

ATTRIB

(LOG (SIMP SIMPLOG[[

DEFINE

(((SIMPTRIG

(LAMBDA

(A B C D)

(FROG (Y(

(RETURN (COND

((EQUAL O B) C[

((ATOM D) (LIST A D))

((SETQ Y

ICDR ISASSOC (CAR D)

(GET A (_UOTE SIMPTRIG))

(QUOTE NILL[)))

[SIMP (SUBST (CADR D) (QUOTE X) Y)))

(T (LIST A Oil)1)))

(SIMPTRIGI (LAMBDA (A((SIMPTRIG (QUOTE SIN[0 0 (SIMP (CAR A))[)I)[

ATTRIfi

(SIN (SIMP SIMPTRIGI[)

ATTRIB

(COS (SIMP SIMPTRIG2[I

DEFINE

(((SIMPTRIG2 (LAMBDA (A) (SIMPTRIG (QUOTE COS) 0 ! (SIMP (CAR All)l)[[

DEFINE

(((TIMESLOOP

(LAMBDA

(A 8I

(CONS

(QUOTE PLUS)

(MAPLIST B

(FUNCTION (LAMBDA (C)

(SIMPTIMES (PROG23 (CSETQ SIMPIND T((LIST A (CAR CI({CSETQ SIMPIND NILII))))())
(EXPAND

(LAMBDA

(A B)

(SIMPPLUS (MAPLIST B (FUNCTION (LAMBDA (C) (TIMESLOOP [CAR C} All)l)))

(PROG23 (LAMBDA (A B C) B)) l)

DEFINE

(((SIMPTAN (LAMBOA (A)

(COND ((EQ (CAAR A) (QUOTE ARCTAN)) (SIMP (CADAR A)))

(T {SIRPTRIG (QUOTE TAN) 0 O [SIMP (CAR A)III)I)
(SIMPARCTAN (LAMBDA (A[

(CONO ((EQ (CAAR A) (QUOTE TAN() (SIMP (CADAR All[

(T (SIMPTRIG (QUOTE ARCTAN) 0 0 (SIMP [CAR A)))) }))))

ATTRIB

(TAN (SIMP SIMPTAN))

z08

ATTR IB

(ARCTAN (SIMP SIMPARCTAN))

DEFINE

(((SIMPDIFFERENCE (LAMBDA (AI
(SIMPPLUS (LIST (CAR A)

{SIMPTIMES {LIST -I ICADR AT))))11

(SIMPQUOTIENT (LAMBDA (A)
(SIMPTIMES (LIST (CAR A)

(SIMPEXPT (LIST (CADR A) -l)) I|))

(SIMPMINUS (LAMBDA (A) (SIMPTIMES (LIST -I (CAR A)))))))

ATTRIB
(DIFFERENCE (SIMP SIMPDIFFERENCE))

ATTRIB

(QUOTIENT (SIMP SIMPQUOTIENT|)

ATTRIB

(MINUS (SIMP SIMPMINUS|)

ATTRIB

(SIN (SIMPTRIG ((ARCSIN . X)
(ARCCOS EXPT (DIFFERENCE I {EXPT X 2)) O.SEO}

(ARCTAN QUOTIENT X (EXPT (PLUS I (EXPT X 2)) O.SEO)))))

ATTRIfi

(CDS (SIMPTRIG ((ARCSIN EXPT (DIFFERENCE I (EXPT X 2)1 O.SEO)
(ARCCOS . X)

(ARCTAN EXPT (PLUS I (EXPT X 2)) -O.SEO))))

ATTRIB

(TAN (SIMPTRIG ((ARCSIN QUOTIENT X (EXPT (DIFFERENCE 1 (EXPT X 2)) O.5EO))

(ARCCOS QUOTIENT (EXPT (DIFFERENCE I (EXPT X 21) OoSEO) X)

(ARCTAN , X))))

ATTRIB
(ARCSIN (SIMPTRIG ((SIN • X) (COS PLUS X {QUeTIENT Pl 2|}))}

ATTRIB
{ARCCOS (SIMPTRIG ((SIN DIFFERENCE X (QUOTIENT P{ 2)) (COS . X)I))

ATTRIB

(ARCTAN (SIMPTRIG ((TAN • X|)))

DEFINE
(((NILL (LAMBDA NIL (_UOTE (NIL()}|ll

DEFINE

((SIMPARCSIN (LAMBDA (A) (SIMPTRIG (QUOTE ARCSIN| O 0 (SIMP (CAR AT))})

SINPARCCOS

{LAMBDA (A)

{SIMPDIFFERENCE (LIST (SIMPQUOTIENT (LIST (QUOTE PIT 2))

(SIMPARCSIN {LIST A))))))

SIMPARCCOT

(LAMBDA (A)
(SIMPDIFFERENCE (LIST (SIMPQUOTIENT (LIST (QUOTE PI) 2|)

(SIMPARCTAN (LIST A)) |Ill))

209

ATTRIB

(ARCSIN {SIMP SIMPARCSIN)!

ATTRIB

(ARCCOS (SIMP SIMPARCCOS))

ATTRIB

(ARCCOT {SIMP SIMPARCCOT))

DEFINE

(({MATCHSUMI (LAMBOA (ASUM BSUM)

(PROG (Z W LENGTH MINLENGTH QUDT MINQUOT)

(COND ((NOT (EQUAL (LENGTH ASUM) (LENGTH BSUM)))

(RETURN NIL)))

(SETQ Z (CADR ASUM))

(SETQ W (CDR BSUM))

(SETQ MINLENGTH lOOO)

LOOP

(SETQ QUOT (SIMP_UOTIENT (LIST (CAR W) Z)))
(SETQ LENGTH

(LENGTH (COND |(EQ (CAR QUOT)

(QUOTE TIMES) |

(CDR QUOT))

(T (QUOTE (NIL))))))
(COND ((GREATERP LENGTH MINLENGTHI {GO A)))

(SETQ MINLENGTH LENGTH)

(SETQ MINQUOT QUOT)

A

(COND ((EQUAL MINLENGTH I) (GO OUT)))

(SETQ W (CDR W))

(COND (W (GO LCOP)))

OUT

(COND ((M2 8SUM

(TIMESLOOP MINQUOT (CDR ASUM))
NIL)

(RETURN MIN_UOT)))

(RETURN NIL))))))

DEFINE

(((SIMPCOT (LAM_DA (X) (LIST (QUOTE EXPT) (SIMPTAN X) -I)))))

ATTRIB

(CUT (SIMP SIMPCOT))

DEFINE

(((REPLACE (LAMBDA (DICT EXPI)

(PROG23 (CSETQ SIMPIND T) (REPLAC EXP1) (CSETQ SIMPIND NIL))))
(REPLAC

(LAMSDA

(_XPI)

(PROG {ZI)

(RETURN

(COND

((f_ULL EXPI) NIL)

((NOT (ATOM EXPII)
(COND

((EQ (CAR EXPI! (QUOTE EVAL))
(PROG2

(SETQ ZI (EVAL (REPLAC (CADR EXP1)) (ALIST)))

(PROG23
(CSETQ SIMPIND NIL)

210

(SIMPZ[(
(CSETQSIMPINDT()))

({EQ (CAR EXPI) (QUOTE QUOTE*)) {CADR EXPI))

(T {PROG {ZI WI)

{SETQ Z1 {REPLAC (CAR EXP1)))

(SETQ WI (REPLAC (CDR EXP1)))

(RETURN {COND {[AND {EQ Z1 {CAR EXPI)} {EQ WI (CDR EXPI)))

EXPI)

(T [SIMPI {CONS Zl WI)))))))))

{(NUMBERP EXPI) EXPI)

{[SETQ ZI (SASSOC EXP1 DICT {FUNCTION (LAMBDA NIL NIL))))

(CDR ZI))

(T EXPI))))))

(SIMPI [LAMBDA (EXPI)

(COND

[{ATOM EXPI) EXPI)

IINOT {GET {CAR EXPI) {QUOTE SIMP))) EXPI)
{(EQ (CAR EXPI) {QUOTE TIMES)) (SIMPTIMES (CDR EXPI))}

{{EQ (CAR EXPI) (QUOTE PLUS)) ISIMPPLUS (CDR EXPI)))

({EQ {CAR EXPI) {QUOTE EXPT)) (SIMPEXPT {CDR EXPI)))

IT {APPLY {GET {CAR EXPI) (QUOTE SIMP)) {LIST (CDR EXPI)) (ALIST))))))))

DEFINE

{((DVCOE

(LAMBDA (E P IND)

(PROG (X Y Z)
(SETQ ANS [CONS NIL ANS))

(COND {(NOT {EQ (CAR E) {QUOTE TIMES)))

{SETQ E {LIST {QUOTE TIMES) E))))

(SETQ Z {CDR P))

LOOP

(SETQ Z {CDR Z))

(COND {{NULL Z)

{COND {{TESTA (CADR P) {SIMP (COPY1 E)) NIt)

{RETURN ICOND lIND {RESTOREI))
IT [RESTORE2)))))

(T (RETURN {RESTORE))) ())

{SETQ X E)

{GO LOOP2)

LOOP)

{SETQ X (CDR X))

LOOP2

(COND {{NULL (CDR X)) [GO L6)))

ICOND {(EQ (CAADR X) {QUOTE EXPT)) {GO tl))

{(M1 {CADR X) {CAR Z)) (GO L2)))

(GO LOOP))

L2

(SETQ ANS {CONS {CONS X ICDR X)) ANS))

(RPLACD X (CDDR X))

{GO LOOP)

L)

(COND {(EQ ICAAR Z) (QUOTE EXPT)) {GO t3))

{{NOT (MI {CADADR X) (CAR Z))) {GO LOOPI)))

{SETQ Y -1)

L7
{SETQ ANS {CONS {CONS X (CDR X)) ANS))

[RPLACD X

{CONS (SIMP {LIST {CAADR X)

(CADADR X)

{LIST (QUOTE PLUS)

[CAR (CCDADR Xl)

211

L3

L5

L6

Y lid

(CDDR X)))

(GO LOOP)

(COND [{MI (CADADR X) (CADAR Z)) (GO L5)))

(GO LOOPI)

(COND {(MI (CAR (CDDADR X)) (CAODAR Z)) (GO L2)))

(SETQ Y (SIMPMINUS (LIST (CAODAR Z))))

(GO LT)

(COND ((MI 1 (CAR Z)) {GO LOOP)))

(SETQ E

(CONS {CAR E)

(CONS (SIMPEXPT (LIST (CAR Z) -I)) (CDR E))))
{GO LOOP))))))

DEFINE

(((DIFFI (LAMBDA (EXP VAR) (PROG23 (CSET SIMPIND T) (DIFF EXP) (CSET SIMPIND NIL))))
(DIFF

(LAMBDA

(EXP)

(COND

((ATOM EXP) (COND ((EQ EXP VAR) I) IT 0)))

({EQ (CAR EXP) (QUOTE EXPT))

(COND

((FREE (CADDR EXP))

[SIMPTIMES (LIST

(CADDR EXP)

(SIMPEXPT (LIST (CAOR EXP) ISIMPPLUS (LIST (CADDR EXP) -l))

(DIFF {CADR EXP)))))

((FREE (CADR EXP))

(SIMPTIMES (LIST

EXP

(SIMPLOG (LIST (QUOTE E) (CADR EXP)))

(DIFF (CADDR EXP)))))

IT

(SIMPTIMES

(LIST

EXP

(SIHPPLUS (LIST

(SIMPTIMES {LIST

(CADDR EXP)

(OlFF (CADR EXP))

(SIMPEXPT {LIST (CADR EXP) -I))))

(SIMPTIMES (LIST {SIMPLOG (LIST (QUOTE E) (CADR EXP)II

(DIFF (CADDR EXP)))))))))))

((EQ (CAR EXP) (QUOTE TIMES))

(SIMPPLUS

(MAPLIST

(CDR EXP)

(FUNCTION (LAMBDA (Y)

{SI½PTIMES (CONS (DIFF (CAR Y)) (CHOICE {CAR Y) (CDR EXP)I))))))

((EQ (CAR EXP) (QUOTE PLUS))

(SIMPPLUS (MAPLIST (CDR EXP) (FUNCTION (LAMBDA {Y) (DIFF (CAR Y)))))))

iT (APPLY (GET (CAR EXP) (QUOTE OIFF)) (LIST (CDR EXP)) (ALIST))))))
(CHOICE (LAMBDA CA B)

(COND ((EQ A (CAR 8)) (CUR B)) (T (CONS {CAR B) (CHOICE A (CDRB)})))))))

DEFINE

(((BIGDIFF {LAM_DA {A B)

212

(SIMPTIMES (LIST (DIFF (CAR A))
(SUBST {CAR A) (QUOTE X) B}))))))

DEFINE

I({DIFLOG (LAMBDA {A}
(PROG NIL (SETQ A (CDR A)) (RETURN [BIGDIFF A IQUOTE IEXPT X -1))}])))

(DIFSIN (LAMBDA (A) (BIGDIFF A I_UOTE (COS X)))I)

[DIFCOS (LAMBDA (A) (BIGDIFF A (QUOTE (TIMES -1 ISIN X))))))

{DIFTAN (LAMBDA IA) (BIGDIFF A (_UOTE [EXPT (SEE X) 2)))))

[DIFSEC (LAMBDA (A) (BIGDIFF A (QUOTE (TIMES (SEC X] (TAN X)))l))

(DIFARETAN [LAMBDA (A) (BIGDIFF A (QUOTE (EXPT {PLUS i IEXPT X 2)) -l))]]l

DIFAKCSIN (LAMbDA (A}

(BIGDIFF A (QUOTE (EXPT (PLUS I (TIMES -I (EXPT X 2))) -0.5EOII)]I

DIFCSC (LAMBDA {A) (BIGDIFF A IQUOTE (TIMES -i [COT X) (CSC X))))))

DIFCOT (LAMBDA (A) (BIGDIFF A (QUOTE (TIMES -I IEXPT {CSC _) 2)))))]

DIFARCCOS (LAMBDA (A) (MINUS (DIFARCSIN A]))]

DIFARCSEC

(LAMBDA (A)

(BIGDIFF A

(QUOTE (EXPT (TIMES X
{EXPT (DIFFERENCE (EXPT X 2) II

0.5EO)l

-I)))))

OIFARCCSC [LAMBDA (A) {SIMPMINUS (LIST (DIFARCSEC A))]))

(DIFINTEGRAL (LAMBDA IX)
(COND ((EQ (CADR X) VAR) lEAR Xl)
IT (SIMP (LIS[(QUOTE INTEGRAL) {DIFF (CAR X)) (CADR X)))) I))l)

ATTRIB

(INTEGRAL (OIFF DIFINTEGRALI)

AiTRIB
(SIN [DIFF DIFSIN))

ATTRIB
(COS {DIFF DIFCOS))

ATTRIB

(TAN (OIFF DIFTAN))

ATTRIB

[SEE (DIFF DIFSEC))

ATTRIB
(ARCTAN (DIFF DIFARCTAN))

ATTRIB

(ARCSIN (DIFF DIFARCSIN)I

ATTRIB

(LOG (DIFF DIFLOGI)

ATTRIB

(CSC (DIFF DIFCSC))

ATTRIB
(COT (DIFF DIFCOT))

ATTRIB

IARCCOS (DIFF DIFARCCOS))

213

ATTRIB

(ARCSEC (DIFF DIFARCSEC))

ATTRI8

(ARCCSC (DIFF DIFARCCSC)}

DEFINE

(((EXPAND2 (LAMBDA (EXP) (PROG23 (CSET SIMPIND T) {EXPANDI EXP) ICSET SIMPIND NIL)))

)

(EXPANDI

(LAMBOA

(EXP)

(COND

(ATOM EXP) EXP)

IAND [EQ (CAR EXP) (QUOTE EXPT))

(NOT (ATOM (CADR EXP)))

((NTEGERP (CADDR EXP))

(E_ (CAADR EXP) (QUOTE PLUS))

(GREATERP (CADDR EXP) O)

(LESSP (CADDR EXP) 6))

(EXPANDEXPT (CADR EXP) (CADDR EXP}))

{EQ (CAR EXP) (QUOTE TIMES))

(COND ((CDDR EXP]

(PRODEXPAND [EXPANDI (CADR EXP])

[EXPAND1 (CONS (QUOTE TIMES) (CDDR EXP))]))

((CDR EXPI (EXPANDI [CADR EXP)))

(T NIL)))

T (SIMPI (MAPLIST EXP (FUNCTION (LAMBDA (C) (EXPANDI (CAR C))))})))))

(PRUDEXPAND (LAM_DA (A B)

(CONO

(NOT (OR (EQ (CAR A) (QUOTE PLUS)) (EQ (CAR B) (QUOTE PLUS))))

(SIMPTIMES (LIST A B)) }

(_OT (EQ (CAR A) IQUUTE PLUS))) (TIMESLOOP A (CDR B)))

(NOT (EQ (CAR B) (QUOTE PLUS))_ (TIMESLOOP B (CDR A)))

T (EXPAND (CDR A) (CDR B)))))))}

DEFINE

(((RATIONALIZE

(LAMBDA

(EXP)

lPROG (W)

(RETURN

(COND

((NOT [EQ (CAR EXP) (QUOTE PLUS))) NIL)

((SETQ

W

(M2

EXP

[QUOTE

(PLUS

(TIMES

(COEFFTT

(C

(FUNCTION

[LAMBDA

(C)

(MI

C

(_UOTE

(EXPT

(AA (FUNCTION (LAMBDA (AA)

214

(AND (NOT (EQUAL AA t))
(NOT (EQUAL AA O))))))

(N (FUNCTION (LAMBDA (NT
(AND (NUMBERP N) (LESSP N 0)})}})))))))

(COEFFTT (B TRUE)))
(COEFFPT {A TRUE))))

NIL))

(REPLACE W (QUOTE (TIMES (PLUS (QUOTIENT A C) B) C))))

{T NIL))))))))

FORM,SIN,DERIVATIVE-DIVIDES

DEFINE

)({TRUE((LAMBDA (A) (OR {NOT (NUMBERP A)) (NOT (ZEROP A)))))

{INTEGERPI (LAMBDA (AI)INTEGERP (SIMPTIMES (LIST 2 A)))))

(VARP (LAMBDA CA))EQUAL A VAR)))

(FREEI (LAMBDA (A) (AND)FREE A) (OR (NOT (NUMBERP A)) (NOT (ZEROP A))))))

(FIXPI (LAMBDA (A) (AND (NUMBERP A) (FIXP A))|)

)MASTER (LAMBDA (A)

(PRDG NIL

{FILEWRITE (QUOTE MANOVE) (QUOTE LISP) (QUOTE MASTER))

(FILEAPND

)QUOTE MANOVE)

{QUOTE LISP)

(LIST (CONS (CAR A) (TRANSL (SIMP (CDR A))))))

(CHAIN)QUOTE ((SAVE MOSES T) (R FULMAN MANOVE))))

(FILESEEK {_UOTE MANOVE) (QUOTE ANS))

(RETURN (SIMP (UNTR)READ)))))))))

DEFINE

)((FORM

(LAMBDA

(EXPRES)

(COND

))FREE EXPRES) NILI

()ATOM EXPRES) NIL)

()MEMBER (CAR EXPRES) (QUOTE (PLUS TIMES)))

({LAMBDA (L)

(PROG (Y)

LOOP

(COND

({SETQ Y (FORM (CAR L))) {RETURN Y))

))NOT (SETQ L (CDR L))) (RETURN NIL))

IT (GO LOOP)) |))

(CDR EXPRES)))

((MEMBER (CAR EXPRES) (QUOTE CLOG ARCTAN ARCSIN)))

(COND

((SETQ ARG

(M2

EXP

(LIST

(QUOTE TIMES)

)QUOTE (COEFFTT (C RATBPRIME)))

ICONS {CAR EXPRES)

(COND ((EQ (CAR EXPRES) IQUOTE LOG))

(CONS (CADR EXPRES) (QUOTE ((B RAT8)))))

IT (QUOTE liB RAT8)))))l)

NIL))

215

(RATLOG EXP VAR (CONS (CONS (QUOTE A) EXPRES) ARG)))
(T

(PROG (Y Z)

(COND

((SETQ Y

(FORM (COND ((EQ (CAR EXPRES) (QUOTE LOG)) ICADOR EXPRES))

(T (CAOR EXPRES)))))
(RETURN Y))

{(AND

(EQ (CAR EXPRES) (QUOTE LOG|)

(SETQ Z (M2 (CADDR EXPRES) C NIL))

(FREE (CADR EXPRES))

(SETQ Y

(M2

E XP

(QUOTE (TIMES (COEFFTT (C RAT8)) (COEFFTT (D ELEM))))
NIL)))

(RETURN

((LAMBDA

(A B C D BASE)

(SUBST

EXPRES

VAR

(INTEGRATE

(SIMPTIMES (LIST

(SUBST

(LIST

(QUOTE QUOTIENT)

(LIST
(QUOTE DIFFERENCE)

(LIST (QUOTE EXPT} BASE VAR)
A)

B)

VAR

C)

(LIST

(QUOTE QUOTIENT)
(LIST (QUOTE EXPT) BASE VAR)

B)

(SUBST VAR EXPRES D)))

VAR)))

(COR (SASSOC (QUOTE A) Z))

(CDR (SASSOC (QUOTE B) Z))

(CDR (SASSOC (QUOTE C) Y) I
(CDR (SASSOC (QUOTE DI Y))

(CADR EXPRES) |))

(T (RETURN NIL)))Ill)
((OPTRIG (CAR EXPRES))

(COND

(INOT (SETQ W (M2 (CADR EXPRES) C NIL))) {FORM (CADR EXPRES)))

(T (PROG2 (SETQ POWERLIST T) (MONSTERTRIG EXP VAR (CADR EXPRES))))))

((FIXP! (CADDR EXPRES)) (FORM (CADR EXPRES)))

((FREE (CADR EXPRES))

(COND

((SETQ W

(M2

EXP

(QUOTE (TIMES (COEFFTT (R RAT8)) (EXPT (BASE FREE) {P POLYP))))

NIL))

(CALLALGORT (SUBLIS W (QUOTE (R P BASE))) VAR))

((M2 (CADDR EXPRES) C NIL) (SUPEREXPT EXP VAR (CADR EXPRES)))

216

{T (FORM [CAODR EXPRES)))))

((NOT (RAT8 (CADR EXPRES))) (FORM [CADR EXPRES)))

((AND (SETQ W (M2 (CAOR EXPRES) RATRDOTFORM NIL))

(OENOMFIND (CADDR EXPRES)))

{PROG2 (SETQ POWERLIST T) (RATROOT EXP VAR (CADR EXPRES) W)))

((NOT {INTEGERPI {CADDR EXPRESI))

(COND {[M2 EXP CHEBYFORM NIL) (CHEBY EXP VAR))

(T (FORM [CADR EXPRES)))))

((SETQ W (M2 (CADR EXPRES) D NIL)|

(COND

((SETQ ARG

(M2

EXP

(QUOTE (TIMES

(EXPT (VAR VARP) -I)

(COEFFTT {AA FREE))

(EXPT (SQ M[D) -O.SEO)))

NIL))

(SIMP

(SUBST

(LIST {QUOTE EXPT) VAR -I)

VAR

(ALGEB2

(LIST

(QUOTE TIMES)

-1

(REPLACE ARG (QUOTE AA))

(LIST

(QUOTE EXPT)
(SETO Y

(REPLACE ARG

(QUOTE (PLUS (TIMES A (EXPT VAR 2)) {TIMES B VAR) C))))

-OoSEO))

VAR

Y

(REPLACE ARG

(QUOTE [{(QUOTE- C) . A) ({QUOTE* B) . B) ((QUOTE* A) . C))))))))

(T (ALGEB2 EXP VAR (CADR EXPRES) W))))

((SETQ W (M2 {CADR EXPRES) E NIL))

(PROG2 (SETQ POWERLIST T) {ROOTLINPROD EXP VAR [CADR EWPRES) W))]
((M2 EXP CHEBYFORM NIL) (CHEBY EXP VAR))

((NOT [M2 (SETQ W (EXPANOZ (CADR EXPRES|)) (CADR EXPRES) NIL))

(PROG2

(SETQ EXP (SIMP (SUBST W (CADR EXPRES) EXP)])

(FORM (SIMP (LIST (QUOTE EXPT) W (CADOR EXPRES))))))

((SETQ W (RATIONALIZE (CADR EXPRES)))

(PROG2

(SETQ EXP (SIMP (SUBST W (CADR EXPRES) EXP)))

(FORM (SIMP (LIST (QUOTE EXPT) W {CADDR EXPRES))))))

(T NIL))})))

DEFINE

(((INTEGRATE

(LAMBDA

(EXP VAR)

(PROG (Y ARG POWERLIST B W C D E RATROOTFORM CHEBYFORM)

(COND {(FREE EXP) (RETURN (SIMPTIMES {LIST EXP VAR)))))

(COND

((NOT [EQ (CAR EXP) (QUOTE PLUS))) (GO D))

(T

[RETURN

217

(SIMPPLUS (MAPLIST (EDR EXP)

(FUNCTION [LAMBDA (C) (INTEGRATE) (CAR C)))))))))

D

(COND ((SETQ Y {OIFFDIV EXP VAR)) (RETURN Y)))

(SETQ Y

(COND ({EQ (CAR EXP) [QUOTE TIMES)) (CDR EXP)) (T (LIST EXP))))

(SETQ C

[QUOTE [PLUS (COEFFPT (B FREE) (X VARP)) (COEFFPT (A FREE)))))
(SETQ RATROOTFORM

[QUOTE (TIMES

(COEFFTT (E FREE))

[PLUS (COEFFPT (A FREE) [VAR VARP)) (COEFFPT (B FREE)))

(EXPT [PLUS (COEFFPT (C FREE) (VAR VARP)) ICOEFFPT (D FREE)))

-I))))

(SETQ

CHEBYFORM

(QUOTE (TIMES

(EXPT (VAR VARP) (RI NUMBERP))

(EXPT (PLUS {TIMES (COEFFTT (C2 FREE)) (EXPT {VAR VARP) (Q FREET)))
[COEFFP (CI FREE)))

(R2 NUMBERP))

(COEFFTT {A FREE)))IT

(SETQ D

(QUOTE (PLUS

(COEFFPT (C FREE) (EXPT (X VARP) 2))

(COEFFPT (B FREE) (X VARP))

(COEFFPT (A FREE)))))

(SET_ E

[QUOTE [TIMES (PLUS (COEFFPT (A FREE) (VAR VARP)) {COEFFPT (B FREE)))

[PLUS (COEFFPT [C FREE) (VAR VARP)) (COEFFPT (D FREE))))))

LOOP

(COND

IIRAT8 (CAR Y)I (GO SKIP)(

((SETQ W (FORM (CAR Y)I) [RETURN W))

(T [GO SPECIALI))

SKIP

(SETQ Y (CDR Y))

(COND ({NULL Y)

[RETURN (COND [(SETQ Y (POWERLIST EXP VAR)) Y)

(T [MASTER [CONS VAR EXP)))))))

(GO LOOP)

SPECIAL

(RETURN [COND

((NOT (M2 EXP (SETQ Y (EXPAN02 EXP)) NILII [INTEGRATE Y VAR))

((AND (NOT POWERLIST) (SETQ Y (POWERLIST EXP VAR))) Y)

((SETQ Y (PARTS EXP VAR)) Y)

{T (LIST [QUOTE INTEGRAL) EXP VAR)))))))))

DEFINE

(((RAT8 (LAMBDA (EXP)

(COND ([FREE EXP) T)

[[ATOM EXP) T)

((MEMBER [CAR EXP) [QUOTE [PLUS TIMES)))

(AND (RAT8 (CADR EXP))

(COND ((CDDR EXPI

(RAT8 (CONS (CAR EXP) (CDDR EXPI)))

(T T))))

((NOT IEQ [CAR EXP| [QUOTE EXPT))) NIL)

((FIXPI (CADOR EXP)) (RAT8 (CADR EXP)))

(T NILI)tI)I

218

DEFINE

({{INTEGRATE((LAMBDA (A) {INTEGRATE A VAR{)){)

DEFINE

{{{POLYP (LAMBDA (EXP{

(COND

{{FREE EXP{ T)

{{ATOM EXP{ T)

{{MEMBER (CAR EXP) (QUOTE (PLUS TIMES)))

(AND {POLYP (CADR EXP))

{DR {NULL {CDDR EXP{) (POLYP (CONS (CAR EXP) {CDDR EXP){){))

({EQ {CAR EXP) (QUOTE EXPT))

(AND

(NUMBERP {CAODR EXP){

([NTEGERP (CADDR EXP){

(GREATERP {CADDR EXP) O{

{POLYP {CADR EXP{) {{

(T NIL{){)

(CALLALGORT

{LAMBDA

(A VAR{

(PROG NIL

{FILEWRITE {QUOTE MANOVE{ {QUOTE LISP) (QUOTE SUPERALGORT))

(FILEAPND

{QUOTE MANOVE)

(QUOTE LISP)

{LIST

(TRANSL (CAR A){

(TRANSL (SIMPTIMES {LIST {CADR A) (SIMPLOG {LIST {QUOTE E) (CADDR AI{))))

VAR))

{CHAIN {QUOTE ((SAVE MOSES T) (R FULMAN MANOVE))))

(FILESEEK {QUOTE MANDVE) (QUOTE ANS)}

(RETURN (SIMP (UNTR {READ)))) {))))

DEFINE

{((SIN {LAMBDA (EXP VAR) (INTEGRATE (SIMP EXP) VAR)))

(OPTRI_ (LAMBDA (A) (MEMBER A (QUOTE (SIN COS SEC TAN CSC COT)){))

(ELEM

{LAMBDA

(A{

(COND

((FREE A) T)

{{ATOM A) NILI

({M2 A EXPRES NIL) T)

(T (EVAL {CONS (QUOTE AND)

(MAPLIST (COR A) {FUNCTION (LAMBDA (C) (ELEN {CAR C{)))))

_IL {))))){

DEFINE

{({FREE (LAMBDA (A)

(COND ((ATOM A) (NOT (EQ A VAR{{)

(t (AND {FREE (CAR A)) {FREE (CDR A)))I)))

(VARP {LAMBDA (A) (EQ A VAR)))))

DEFINE

{((DEFINITEINTEGRAL

{LAMBDA (EXP VAR LOWER UPPER{

(PROG (Y)

(SETQ Y {PRINT {INTEGRATE EXP VAR{{)

{RETURN (SIMPDIFFERENCE (LIST (SUBST UPPER VAR Y)

{SUBST LOWER VAR Y)))))))

219

(DOUBLEINTEGRAL

[LAMBDA (EXP L}

(PROG {Y)

(SETQ Y
(DEFINITEINTEGRAL EXP

(CAAR L)

(CADAR L)

(CAR {CDDAR L)))}

(RETURN IDEFINITEINTEGRAL Y

(CAADR L)
(CADADR L)
(CAR (CDDADR L)))})))))

DEFINE

{((INTEGRALLOOKUP

(LAMBDA

(EXP)

(COND

((EQ (CAR EXP} (QUOTE LOG}}

(SIMP [SUBST

(CADDR EXP)

(QUOTE X)

(QUOTE (PLUS (TIMES X (LOG E X)) (TIMES -1 X))) })}

((EQ (CAR EXP) (QUOTE PLUS)} (SIMPTIMES (LIST 0.5EO EXP EXP}))

((EQ (CAR EXP} (QUOTE EXPT})

(COND

((FREE (CADR EXP))

(SIMPTIMES (SUBST

EXP

(QUOTE A}

(SUBST (CADR EXP} (QUOTE B) (QUOTE (A (EXPT (LOG E B} -I))))))}
((EQP (CADDR EXP) -1)

(SIMP (SUBST (CAOR EXP) (QUOTE X) (QUOTE {LOG E X)})))
(T (SIMP (SUBST

(SIMPPLUS (LIST (CADOR EXP} I})
(QUOTE N)

(SUBST

(CADR EXP)

(QUOTE X)

(QUOTE (TIMES (EXPT N -I) (EXPT X N)))))))l)

(T (SUBST

(CAOR EXP)

(QUOTE X}

(CDR (SASSOC
(CAR EXP}

(QUOTE ((SIN TIMES -I (COS X))

(COS SIN X}

(TAN LOG E (SEC X))

(SEC LOG E (PLUS (SEC X) (TAN X)))

(COT LOG E (SIN X))

(CSC LOG E (PLUS (SEC XI (TAN X)))))

(QUOTE NILL)))))}})
(DIFFDIV

(LAMBDA

(EXP VAR)

(PROG (Y A X V D Z W R)

(SETQ X

(M2

EXP

(QUOTE (TIMES (COEFFTT (A FREE)} (COEFFTT (8 TRUE)})}
NIL))

220

(SETQ A (COR (SASSOC (QUOTE A) X)))

(SETQ EXP (CDR (SASSOC (QUOTE B) X)))
ICOND

(IAND

(EQ (CAR EXP) (QUOTE EXPT))

(EQ (CAADR EXP) (QUOTE PLUS))
(INTEGERP (CADDR EXP))

(LESSP (CAODR EXP) 6)
(GREATERP (CADDR EXPI O))

(RETURN (SIMPTIMES (LIST A

(INTEGRATE {EXPANDEXPT (CADR EXP) (CAOOR EXP)) VARI)))))

(SETQ EXP

{COND I{EQ (CAR EXP) (QUOTE TIMES)) EXP)

{T (LIST (QUOTE TIMES) EXP))))

(SETQ Z (CDR EXPI)

{SETQ Y (CAR Z))

(SETQ R

(LIST (QUOTE PLUS)

{CONS {QUOTE COEFFPT)

(CONS {QUOTE (C FREEI)) (CHOICE Y (COR EXP))))))

(COND

((SETQ W [M2 (DIFFI Y VAR) R NIL))

(RETURN

(SIMPTIMES

(LIST

Y

A

Y

{SIMPEXPT (LIST (SIMPTIMES (LIST 2 (CDR (SASSOC (QUOTE C) W))))

-i)1)1)))

(COND

((MEMBER (CAR Y) (QUOTE (EXPT LOG)))

(COND

{(FREE (CADR Y)) (SETQ W (CADDR Y)))

((FREE (CADDR Y)) {SETQ W (CADR Y)))

{T (SETQ W 0))))

{(MEMBER {CAR Y) (QUOTE (PLUS TIMES))) {SETQ W Y))

(T (SETQ W (CADR Y))))

(COND

((SETQ

W

(COND

((AND

(EQ (CAR (SETQ X (DIFFI W VAR))) {QUOTE PLUS))

(EU

(CAR (SETQ V (CAR (SETQ O (CHOICE Y (COR EXP))))))

(QUOTE PLUS))

INOT (CDR D)I)

(COND ((SETQ D (MATCHSUM {COR X) (CDR V)))

(LIST (CONS (QUOTE C) D)))

(T NIL)))

(T IM2 X R NIL))))

(RETURN

(COND

{(NULL (SETQ X (INTEGRALLCCKUP Y)}) NIL)

(T

{SIMPTIMES

(LIST

X

A

221

[COND
((EQ W T) I)

[T [SIMPEXPT (LIST [CDR [SASSOC [QUOTE C) W)) -I)))))))))))
[SETQ Z (CDR Z))

(CUND [(NULL Z) {RETURN NIL)))

(GO AI)))I)

DEFINE

([[TRUE [LAMBDA (A) T))))

DEFINE

[((MATCHSUM

(LAMBDA

{ALIST BLIST)

(PROG [R S C D)

{SETQ S

[M2

[CAR ALIST)

(QUOTE (TIMES (COEFFTT {A FREE)| (COEFFTT [C TRUE)I|)

NIL))

[SETQ C [CDR ISASSOC {QUOTE C] S)))

{COND

[INOT {SETQ R

{M2

[CONS [QUOTE PLUS) BLIST)
(LIST

[QUOTE PLUS)

(CONS [QUOTE TIMES)

[CONS

(QUOTE ICOEFFTT [B FREEI))}

[COND {[EQ [CAR C) [QUOTE TIMES|) ICDR C)I

IT (LIST C)))l)

(QUOTE (D TRUE)Á)

NIL]))

[RETURN NIL)))

[SETQ D

[SIMP {LIST

(QUOTE TIMES)

[SUBLIS S [QUOTE A))

(LIST [QUOTE EXPT) [SUBLIS R [QUOTE B)) -I))))

(CONO {[M2 [CONS {QUOTE PLUS) ALIST) [TIMESLOOP D BLIST) NIL)

(RETURN D))

IT (RETURN NIL))))))))

DEFINE

[{[EXPANOEXPT (LAMBDA (A N)

[PROG [Y)

[SETQ Y A)

LOOP
(SETQ N (SUB1 N)]

(CONO ([ZEROP N) (RETURN Y)))

(SETQ Y

[EXPAND [CDR A)

[CONO ([EQ [CAR Yl

(QUOTE PLUS))

(CDR Y))

[T {LIST YI) IfÁ

(GO LOOP))))))

METHODS I-9 OF SIN'S SECOND STAGE

222

DEFINE
({(SUPEREXPT

(LAMBDA
[EXP VAR BASE}

(PROG (EXPTFLAG Y W)
{SETQ Y (ELEMXPT EXP))

{COND {EXPTFLAG {RETURN NIL))}

{RETURN

(SIMP

(SUBST

{LIST {QUOTE EXPT) BASE VAR)

VAR

{INTEGRATE

{SIMPQUOTIENT

{LIST Y

{SIMPTIMES {LIST VAR {SIMPLOG {LIST (QUOTE E) BASE|I))))

VAR)))))))

(ELEMXPT

{LAMBDA

{EXP)

(COND

{{FREE EXP) EXP)

({ATOM EXP) {SETQ EXPTFLAG TIT
{{NOT (EQ {CAR EXP) {QUOTE EXPTI))

{CONS {CAR EXP)

{MAPLIST (CDR EXP) {FUNCTION (LAMBDA (C) (ELEMXPT (CAR C)))|)))

{{NOT {FREE (CADR EXP)))
{LIST {QUOTE EXPT) (ELEMXPT (CADR EXP)) (ELEMXPT (CADDR EXP))))

{{NOT {EQ {CADR EXP) BASE}}

(ELEMXPT (LIST

{GUOTE EXPT)

BASE

(SIMP {LIST

{QUOTE TIMES)

{LIST {QUOTE LOG) BASE {CADR EXP))

(CADDR EXP))))))

{{NOT {SETQ W

{M2

{CADDR EXP)

{QUOTE {PLUS (COEFFPT (A FREE} (VAR VARP)) {COEFFPT (B FREE))))

NIL)))

{LIST {CAR EXP) BASE {ELEMXPT {CADDR EXP))|)

(T (SIMP {SUBST

BASE

{QUOTE BASE)
(SUBLIS W {QUOTE {TIMES {EXPT BASE B) [EXPT VAR A))I)))))))})

DEFINE

[{{SUBSTIO

(LAMBDA {EXP)

{COND

{{ATOM EXP) EXP)

({AND (EQ (CAR EXP) {QUOTE EXPT)) (EQ (CADR EXP) VAR))

{LIST (CAR EXP) VAR {INTEGERP {QUOTIENT {CADDR EXP| D))) |

(T (MAPLIST EXP {FUNCTION {LAMBDA {C| (SUBSTlO (CAR C))))II I))

(POWERLIST

(LAMBDA

{EXP VAR)

223

[PROG [Y Z C D POWERLIST B)

(SETQ Y

(M2

EXP

{QUOTE {TIMES
(EXPT [VAR VARP) (C INTEGERP))

{COEFFTT {A FREE))

(COEFFTT (B TRUE))))

NIL))

SETQ B {CDR {SASSOC {QUOTE 8) Y)))

SETQ C {CDR {SASSOC {QUOTE C] Y)))

COND ({NOT {SETQ Z {RATIO B))) (RETURN NIL)))

SETQ D {LISTGCD {CONS {ADDI C) POWERLIST)))

CONO {(NULL O} (RETURN NIL)))

RETURN

{SIMP

(SUBST

{LIST {QUOTE EXPTI VAR Dl

VAR

(INTEGRATE5 {SIMP {LIST

{QUOTE TIMES)
(EXPT O -1)

(CDR (SASSOC {QUOTE A) Y))

(LIST {QUOTE EXPT) VAR {SUBI (QUOTIENT {ADDI C) D)])

{SUBSTIO B)))

VAR])]))))

{RATIO (LAMBDA (EXP)

(CONO

{{FREE EXP) T)

{{ATOM EXP) NIL)

((EQ {CAR EXP] {QUOTE EXPT))
(COND

([EQ (CADR EXP) VAR]

(CONO ({INTEGERP ICADDR EXP))

[SETQ POWERLIST {CONS {CADDR EXP) POWERLIST)))

[T NIL)))

{T (AND {RATIO (CAOR EXP)) {RATIO {CAODR EXP)I)I))

{{MEMBER {CAR EXP) {QUOTE {PLUS TIMES)))

{AND (RATIO (CADK EXP)I

(OR {NULL (COOR EXP)) {RATIO (CONS (CAR EXPI (CDOR EXPI)tl I)

((EQ {CAR EXP) {QUOTE LOGI) {RATIO (CADDR EXP)))

{T {RATIO {CADR EXP))))))

(LISTGCD [LAMBDA (POWERLIST)

[PROG (D)

[SETQ D {CAR POWERLIST))

LOOP

(SETQ POWERLIST (CDR POWERLISTJ)

(COND [[ONEP D} {RETURN NIL)))

{CONO ({NULL POWERLIST) {RETURN D)))

(SETQ D {GCD O {CAR POWERLIST)))

{GO LOOP))))))

DEFINE
{({INTEGRATE5 (LAMBDA (EXP VAR)

(COND ([RAT8 EXP) {MASTER {CONS VAR EXP)))

IT (INTEGRATE EXP VAR)))))))

DEFINE

({{ABSOLUTE (LAMBDA {A) (CONO ((LESSP A O) {MINUS A_) {T A))))))

224

DEFINE
(((INTEGERP (LAMBDA (A)

(PROG (Y)
(SETQ Y 11

(COND ((NOT [NUMBERP A)) (RETURN NIL})

((NOT (FLOATP All (RETURN All)

C

(COND

((EQP Y A) (RETURN Y})

((LESSP Y A) (GO A))
((NOT (GREATERP (DIFFERENCE Y A) 0.98999999E0)) (RETURN NIL)})

(SETQ Y (SUBI Y))

(GO C)

A
(COND ((NOT (GREATERP (DIFFERENCE A Y) O.9B999999EO)) (RETURN NIL)))

(SETQ Y (ADDI Y) I

(GO C) 111

(FIXPI [LAMBDA {A) (AND (NUMBERP A) (FIXP AT)))

{RAT3 (LAMBDA {EXP IND)

(COND

((FREE EXP} T)

((ATOM EXP) IND)

((MEMBER (CAR EXP} (QUOTE (TIMES PLUS)))

(AND {RAT3 (CADR EXP) INDI

[OR (NULL (CDDR EXP)I (RAT3 (CONS (CAR EXPI (CODR EXP)) IND))))

((NOT [EQ (CAR EXP) (QUOTE EXPT)))

(COND ((EQ (CAR EXP) (QUOTE LOG)) (RAT3 (CDDR EXP) T))

IT (RAT3 ICADR EXP) T)I 1)
((FREE (CADR EXP)) IRAT3 (CADDR EXP) T))

[(FIXPI (CADDR EXP)) (RAT3 (CAOR EXP) IND))

((AND (M2 (CADR EXP) RATROOT NIL) (DENOMFIND (CADDR EXP)))

(SETQ ROOTLIST (CONS (DENOMFIND (CADDR EXP)) ROOTLIST)))

(T (RAT3 (CADR EXP) NIL)|)I)

(SUBST4 {LAMBDA (EXP)

(COND
((FREE EXP) EXP)

([ATOM EXP) A(

((NOT (EQ (CAR EXP) (QUOTE EXPTI))

(MAPLIST EXP (FUNCTION (LAMBDA (C) (SUBST4 (CAR C)))I))

([M2 (CADR EXP) RATROOT NIL)

(LIST [CAR EXP) B (INTEGERP (TIMES K (CADDR EXP))I))

IT (LIST {CAR EXP) (SUBST4 (CADR EXP)) (SUBST4 (CAODR EXP)))))}I

(FINDINGK {LAMBDA (LIST)

(PROG (K)

(SETQ K 11
A

(COND ((NULL LIST((RETURN KIll

(SETQ K (QUOTIENT (TIMES K (CAR LIST)) [GCD K [CAR LISTI)))

(SETQ LIST (CDR LIST()

(GO A)))1

(DENOMFIND (LAMBDA (K)

(PROG (Y)

(COND I(NOT (NUMBERP K)) (RETURN NILII)

(SETQ Y I)

A

{COND ((INTEGERP (TIMES K Y)) (RETURN Y)))

(SETQ Y (ADD1 YI)
[COND ([LESSP Y 25) (GO A)))

(RETURN NIL) 111

(GCD {LAMBDA (A B)

(PROG NIL

225

A
(COND ({ZEROP A) (RETURN (ABSOLUTE B))I)
{SET_ B (REMAINDER B All

{COND ((ZEROP B) {RETURN (ABSOLUTE A)}))

(SETQ A (REMAINDER A B)I
(GO A))))

(RATROOT

(LAMBDA

(EXP VAR RATROOT W}

(PROG (RODTLIST K Y WI}

(COND ((SETQ Y (CHEBY EXP VAR)) (RETURN YI))

(COND ((NOT (RAT3 EXP TI) (RETURN NIL)))

(SETQ R (FINDINGK ROOTLISTI)

{SETQ WI {CONS (CONS (QUOTE K) K) W))

{SETQ

Y

(SUBST4I
EXP
(SIMP (SUBLIS WI

(QUOTE (QUOTIENT

(DIFFERENCE B (TIMES O (EXPT VAR K)))

(DIFFERENCE (TIMES C (EXFT VAR K)) A)))))
VAR))

{SETQ

Y

(INTEGRATE

(SIMP

(LIST

(QUOTE TIMES)
Y

(SUBL I S

W1

(QUOTE (QUOTIENT

(TIMES E

(DIFFERENCE

(TIMES A D K {EXPT VAR (PLUS -I K)))

(TIMES B C K {EXPT VAR (PLUS -I K})) l)

[EXPT {DIFFERENCE (TIMES C {EXPT VAR KI) A) 2))Ill)
VAR))

(RETURN {SIMP {SUBST

{SIMP (LIST (QUOTE EXPT) RATROOT (LIST {QUOTE EXPT) K -Ill(
VAR

Y))))()))

DEFINE

(((SUBST41 (LAMBDA (EXP A B) (SUBST4 EXP)))))

DEFINE

(({CHEBY

(LAMBDA

(EXP VAR)

(FROG (RI R2 D1 D2 N{ N2 W Q)

(COND

((NOT

(SETQ

W

(M2

EXP

(QUOTE (TIMES

{EXPT (VAR VARP) (RI NUMBERP))

(EXPT (PLUS (TIMES (COEFFTT (C2 FREEI(

226

(EXPT (VAR VARP) (Q FREEI)))

(COEFFP (el FREE)))

(R2 NUMBERP))

(COEFFTT (A FREEI)))

NIL)))

(RETURN NIL)))

(SETQ Q (CDR (SASSOC (QUOTE Q) W)))

{ SETQ

W

(CONS

(CONS (QUOTE A)
(SIMPQUOTIENT (LIST (CDR (SASSOC (QUOTE A) W)) Q)))

(CONS

(CONS

(QUOTE RI)

(SIMPQUOTIENT (LIST (SIMPPLUS (LIST

i

(SIMPMINUS {LIST Q))

(CDR {SASSOC (QUOTE R1) W))))

Q)))

W }})

(SETQ RI (CDR (SASSOC (QUOTE RI) W)))

(SETQ R2 (CDR {SASSOC (QUOTE R2) W)))

(SETQ W (REVERSE W))

(COND

((NOT (AND

(SETQ DI (DENOMFIND RI))

(SETQ D2 (DENOMFIND R2))

(SETQ NI (INTEGERP (TIMES RI DI)))

(SETQ N2 (INTEGERP (TIMES R2 D2))I

(SETQ W

(CONS (CONS (QUOTE D1) D1)

(CONS (CONS (QUOTE D2) D2)

(CONS (CONS {QUOTE NI) NIl

(CONS (CONS (QUOTE N2) N2) W)))))))

(RETURN NIL) }

((AND (INTEGERP RI) (GREATERP RI 0))

(RETURN

(SIMP

(SUBST

(SUBLIS W (QUOTE (PLUS CI {TIMES C2 (EXPT VAR Q()()(

VAR
(INTEGRATE

(EXPAND

(SUBLIS W

(QUOTE ({TIMES

A

(EXPT VAR R2)

(EXPT C2 (MINUS (PLUS R1 I)))))))

(CDR (EXPANDEXPT (SUBLIS W (QUOTE (PLUS VAR {TIMES -I CI))))

RI)))

VAR)))))

((INTEGERP R2)

(RETURN

(SIMP

{SUBST

(SUBLIS W (QUOTE (EXPT VAR (QUOTIENT _ DI))))

VAR

(MASTER

(CONS

VAR

227

(SIMP

{SUBLIS W

(QUOTE (TIMES

DI

A

(EXPT VAR (PLUS N] O1 -I))

(EXPT (PLUS (TIMES C2 (EXPT VAR DlJ) CI) R2! JJJJ))JJ))
((AND (INTEGERP RIJ (LESSP RI OJJ

(RETURN

(SIMP

(SUBST

(SUBLIS W

(QUOTE (EXPT (PLUS CI (TIMES C2 (EXPT VAR Q)J)
(QUOTIENT I O2J |)J

VAR

(MASTER

(CONS

VAR

(SIMP (SUBLIS W

(QUOTE (TIMES
A

DI

(EXPT C2 (MINUS (PLUS RI lJ))
(EXPT VAR (PLUS N1 D1 -1)}

(EXPT (DIFFERENCE (EXPT VAR D1) CI) RIJ JJJlJJJJJJ

((INTEGERP {SIMPPLUS (LIST RI R2)))
(RETURN

(SIMP

(SUBST

(SUBLIS W

(QUOTE (EXPT (QUOTIENT {PLUS CI (TIMES C2 (EXPT VAR QlJJ
(EXPT VAR Q))

(QUOTIENT I DI))))

VAR

(MASTER

(CONS

VAR
(SIMP ISUBLIS W

(QUOTE (TIMES

-I

A

D1

{EXPT CI (PLUS RI R2 lJ)

(EXPT VAR (PLUS N2 D1 -lJJ

(EXPT (DIFFERENCE (EXPT VAR DII C2)

(TIMES -I (PLUS RI R2 2J) })))))J))

(T (RETURN NIL)J Jl)J))

DEFINE

(((ALGEB (LAMBDA (A B C D) (ALGEB2 A B C (CONS NIL DJJJJ)

DEFINE

(((ALGEB2

(LAMBDA

(EXP VAR SQUARE W)

(PROG (A Y B C FI AI Y[X{ E O H G)

(SETQ A (CDR (SASSOC (QUOTE A) W)))

(SETQ B (CDR (SASSOC (QUOTE BJ WJ))

(SETQ C (CDR (SASSOC (QUOTE CJ W))}

{COND ((NOT (RAT6 EXPJ) (RETURN NIL)))
(SETQ YI

228

(SIMP (LIST
(QUOTE PLUS)
VAR
(LIST (QUOTE QUOTIENT) B (LIST (QUOTE TIMES) 2 C)l))l

(SETQ Xl

(SIMP (LIST

(QUOTE DIFFERENCE)

VAR
(LIST (QUOTE QUOTIENT) B (LIST (QUOTE TIMES) 2 C)))))

(SETQ A1

(SIMP (LIST

(QUOTE DIFFERENCE)

A

(LIST

(QUOTE QUOTIENT)

(LIST (QUOTE EXPT) B 2)

(LIST (QUOTE TIMES) 4 C)))))

(COND

((AND (NUMBERP C) (GREATERP C 0)) (GO LI))

((AND (NUMBERP C) (LESSP C 0)) (GO L2))

((ASKPOS C) (GO LID)

((ASKNEG CI (GO L2)I

((ASKIT C (QUOTE POSITIVE)) (GO LI))

((ASKIT C (QUOTE NEGATIVED) (GO L2))

iT (RETURN (ALGEB EXP VAR SQUARE W))))

L1
(COND
((AND (NUMBERP All (GREATERP Ai 0)) (GO L3))

((AND (NUMBERP At) (LESSP At 0)) (GO L5))

((AND (NUMBERP At) (ZEROP AI)) (GO L4))

((ASKPOS A1) (GO L3))

((ASKNEG At) (GO LS))

((ASKIT AI (QUOTE POSITIVE)) (GO L3))

((ASKIT A((QUOTE NEGATIVE)) (GO L5))

((ASKZERO AID (GO L4))

(T (RETURN (ALGEB EXP VAR S_UARE W))))

L2

(COND
((AND (NUMBERP AID (GREATERP A1 0)) (GO L6))
I(AND (NUMBERP AID (LESSP AI 0))

(RETURN (ALGEB EXP VAR SQUARE W)))

((ASKPOS AI) (GO L6))

((ASKIT A1 (QUOTE POSITIVE)) (GO L6))

iT (RETURN (ALGEB EXP VAR SQUARE W))))

L4

(SETQ C (SIMPEXPT (LIST C O.SEO)))

(SETQ Y (SUBSI6 EXP XI (SIMP (LIST (QUOTE TIMES) C VAR))))

(SETQ Y (INTEGRATE {SIMP Y) VAR))

(RETURN (SIMP (SUBST YI VARY)))

L3

(SETQ H (QUOTE (ARCTAN X)))
(SETQ E (QUOTE (TAN X)l)

(SETQ F((QUOTE (SEC X)))

(SETQ G (QUOTE (EXPT (SEC X) 2)))

(GO GETOUT)

L5

(SETQ H (QUOTE (ARCSEC X)))

(SETQ E (QUOTE (SEC X)))

(SETQ AI (SIMPMINUS (LIST At)))

(SETQ FI (QUOTE (TAN X)))

(SETQ G (QUOTE (TIMES (TAN X) (SEC X))))

229

(GO GETOUT)

L6

(SETQ E (QUOTE (SIN Xl))

{SETQ G (QUOTE (COS x)))

(SETQ C (SIMPMINUS (LIST C)))

(SETQ H (QUOTE (ARCSIN X)))

(SETQ F1 (QUOTE (COS X[))

GETOUT

(SETQ C (SIMPEXPT (LIST (SIMPQUOTIENT (LIST AI C)) O.SEO)))

(SETQ D (SIMPEXPT (LIST AI O.SEO)))

(SETG

Y

(SUBST6

EXP

(EXPAND2 (SIMP {LIST (QUOTE PLUS[

(LIST (QUOTE TIMES}

C

(SUBST VAR (QUOTE X) E))

(SIMPDIFFERENCE (LIST Xl VAR)))))

(SIMP {LIST (QUOTE TIMES) D (SUBST VAR (QUOTE X) FI)))))

(SETQ Y (SIMP (LIST (QUOTE TIMES) C (SUBST VAR (QUOTE XI G) Y)))
(SETQ Y (INTEGRATE (EXPAND2 Y) VAR))

(RETURN (SIMP (SUBST

(SUBST

(LIST (QUOTE TIMES) (LIST (QUOTE EXPT) C -I) YI)
(QUOTE X)

H)

VAR

Y))))))))

DEFINE

(((ASKIT (LAMBDA (A B)

(AND

(NOT (PRINT (QUOTE IS)))

(NOT (PRIM1 BLANK))

(PRINT A)

(PRINT B)

(EQ (RDFLX) (QUOTE YES)))}|

(ASKZERO (LAMBDA (A) (ASKIT A (QUOTE ZERO))))

(ASKPOS

(LAMBDA

(A)

(M2

A

(QUOTE (PLUS (COEFFPT

(B (FUNCTION (LAMBDA (B| (AND (NUMBERP B) (GREATERP B 0)))))

(COEFFTT (C POSFN)))))

NIL)i)

(ASKNEG

(LAMBDA

(A)

(M2

A

(QUOTE (PLUS (COEFFPT

(B [FUNCTION {LAMBDA (B) (AND (NUMBERP B) (LESSP B 0)))|)

(COEFFTT (C POSFN)))))

NIL)))

(POSFN (LAMBDA (C)
(COND

((ATOM C) (GET C (QUOTE POSITIVE)))

((EQ (CAR C) (QUOTE EXPT))

230

(COND

((NUM8ERP (CADDR C)) (INTEGERP (QUOTIENT (CACDR C) 2)))

((ATOM (CADRC)) (GET (CADR C) (QUOTE POSITIVE)))

(T NIL) l)

(T NIL)))))}

DEFINE

(((PFCTSQ (LAMBDA (X)

(PROG (Y)

(SETQ Y I}

A

(COND ((EQP (TIMES Y Y) X) (RETURN YI)

((GREATERP (TIMES Y Y) X) (RETURN NIL)))

(SETQ Y (ADDI Y))
(GO A))))

(RATb (LAMBDA (EXP)

(COND

((FREE EXP) T)

((ATOM EXP) T)

((MEMBER (CAR EXP) (QUOTE (PLUS TIMES)))

(AND (RAT6 (CADR EXP))

(OR (NULL (CDDR EXPI) (RAT6 (CONS (CAR EXP) (CDDR EXP))))))

((NOT (EQ (CAR EXPI (QUOTE EXPT))) NIL)

((FIXPI (CADDR EXP)) (RAT6 (CADR EXP)))

((NOT (INTEGERP (SIMPTIMES (LIST 2 (CADDR EXP))))) NIL}

IT (M2 (CADR EXP) SQUARE NIL)))))

(SUBST6

(LAMBDA

(EXP A B)

(COND ((FREE EXP) EXP)
((ATOM EXP) A)
((MEMBER (CAR EXP) (QUOTE (PLUS TIMES)))

iCONS (CAR EXP)

(MAPLIST (CDR EXP)

(FUNCTION (LAMBDA (C) (SUBST6 (CAR C) A B))()))

((NOT (EQ (CAR EXP) (QUOTE EXPT))) (ERROR))
((FIXPI (CADDR EXP))

(LIST (CAR EXP) (SUBST6 (CADR EXP) A B) {CADDR EXP)))

(T (LIST (CAR EXP) B (INTEGERP (TIMES 2 (CAEDR EXP))))))))

(TRIGSQRT

(LAMBDA

(EXP VAR SQUARE W)

(PROG (Y A B C O E F1 G H)

(SETQ A (CDR (SASSOC (QUOTE A) W)))

(SETQ B (CDR {SASSOC (QUOTE B) W)))

[COND [(OR (NOT (NUMBERP A)) (NOT (NUMBERP B)))

(RETURN (ALGEB EXP VAR SQUARE W)))

((NOT (RAT6 EXP)) (RETURN NIL)))

(COND ((GREATERP A O)

(COND ((GREATERP B O)

(AND (SETQ H (QUOTE (ARCTAN X)))

(SETQ E (QUOTE (TAN X)))

(SETQ F1 (QUOTE (SEC XII)

(SETQ G (QUOTE (EXPT (SEC X) 2)))))

iT (AND (SETQ E (QUOTE (SIN X)))

ISETQ G (QUOTE (COS Xl))

(SETQ B (MINUS B))

(SETQ F1 (QUOTE (COS X)))

(SETQ H (QUOTE (ARCSIN X)))))If

(T (AND (SETQ E (QUOTE (SEC X)))

(SETQ A (MINUS A))

231

DEFINE
(((ALGEB

(LAMSDA

(SETQ FI {QUOTE (TAN X)))

{SETQ G {QUOTE (TIMES (TAN X) (SEC X))))

(SETQ N {QUOTE (ARCSEC X))))))

(COND {{NOT (SETQ C (PFCTSQ {QUOTIENT A B)))) {RETURN NIL))

{(NOT {SETQ D {PFCTSQ A))) {RETURN NIL)))
(SETQ Y

(SUBST6 EXP

(SIMP {LIST {QUOTE TIMES)

C

(SUBST VAR {QUOTE X) E)))
(SIMP (LIST (QUOTE TIMES)

D

{SUBST VAR {QUOTE X) FI)))))

{SETQ Y (SIMP {LIST {QUOTE TIMES) C {SUBST VAR {QUOTE X) G) Y)))
{SETQ Y (TRIGINT Y VAR))

{RETURN (SIMP {SUBST {SUBST {LIST {QUOTE TIMES)

(LIST (QUOTE EXPT) C -I)
VAR)

{QUOTE X)

H)
VAR

Y))))))))

(EXP VAR SQUARE W)

(PROG CA B C AI CI Y PROBL)

(SETQ A {CDR {SASSOC {QUOTE A) W)))

(SETQ B {CDR (SASSOC {QUOTE B) W)))

(SETQ C {CDR ISASSOC (QUOTE C) W{)J

ICOND ((NOT (RAT6 EXP)) (RETURN NIL)))
{COND

{{AND {NOT (NUMBERP C)) CASK C))

{SETQ C1 (SIMPEXPT (LIST C O.5EO))))

((NOT {NUMBERP C)) {GO A))

((NOT {GREATERP C 0)) (GO A))

(T {SETQ C1 (SIMPSQRT C))))

(SETQ Y

(SUBST6

EXP

(SUBSTL CA 8 C(VAR)

{QUOTIENT (DIFFERENCE (EXPT VAR 2) A)

{PLUS B (TIMES 2 {TIMES VAR C1)))))

(SUBSTL (A B VAR C1)

(QUOTIENT {PLUS (TIMES (EXPT VAR 2) CII {TIMES B VAR) {TIMES A CI))
(PLUS B {TIMES 2 (TIMES VAR CI)))))))

(SETQ

PROBL

(LIST

{QUOTE TIMES)

Y

{SUBSTL (A B CI VAR)
(TIMES 2

(TIMES IPLUS {TIMES 8 VAR) {TIMES (EXPT VAR 2) CI) {TIMES A CI))
{EXPT {PLUS B {TIMES 2 (TIMES VAR CI))) -2))))))

(SETQ Y

(SUBSTL (VAR El SQUARE)

(PLUS (TIMES VAR CI) (EXPT SQUARE {QUOTIENT I 2)))))
(GO B)

232

(COND

((AND (NOT (NUMBERP A)) (ASK A))
(SETQ A[(SIMPEXPT (LIST A O.5EO))))

((NOT (NUMBERP A)) (ERROR (QUOTE (NOT YET))))

((LESSP A O) (ERROR (QUOTE (NOT YETI)))

(T (SETQ AI (SIMPSQRT A))))

(SETQ Y

(SUBST6

EXP

(SUBSTL (B C At VAR)

(QUOTIENT (DIFFERENCE (TIMES 2 (TIMES VAR AI)) B)

(DIFFERENCE C (EXPT VAR 2))))

(SUBSTL (B C A1 VAR)

(QUOTIENT (PLUS
(TIMES A[(EXPT VAR 2))

(TIMES -I (TIMES B VAR))

(TIMES AI CI)

(DIFFERENCE C (EXPT VAR 2))))))

(SETQ

PROBL

(LIST

(QUOTE TIMES)

Y

(SUBSTL (B C AI VAR)

(TIMES

(TIMES 2

(PLUS

(TIMES AI (EXPT VAR 2))
(TIMES -I (TIMES B VAR))

(TIMES A1 C)))

(EXPT (DIFFERENCE C (EXPT VAR 2)) -2)))))

(SETQ Y

(SUBSTL (VAR AI SQUARE)

(QUOTIENT (DIFFERENCE (EXPT SQUARE (QUOTIENT I 2I) AI) VAR)))

(RETURN (SIMP (UNTR [SUBST Y VAR (MASTER (CONS VAR PROBL)))))))))))

DEFLIST

(((SUBSTL

(LAMBDA (A ALIST)

(SUBLIS (MAPLIST {CAR A)
(FUNCTION (LAMBDA (B)

(CONS (CAR B)

(EVAL (CAR B) ALIST)))))

(CADR A) })))

FEXPR)

DEFINE

(((SIMPSQRT (LAMBDA IX)

(PROG (Y)

(SETQ Y I)

A

(COND ((EQP (TIMES Y Y) X) (RETURN Y|)

((GREATERP (TIMES Y Y) X)

(RETURN (LIST (QUOTE EXPT)

X

(QUOTE (QUOTIENT I 2))))))
(SETQ Y (ADO1 Y))
(GO A))))))

233

DEFINE

(((ASK (LAMBDA (X)

(AND (NOT (PRINI (QUOTE IS)))

(NOT (PRIN1 BLANK))

(PRINT X)

(PRINT (QUOTE POSITIVE))

(EQ (RDFLX) (QUOTE YES)))))))

DEFINE

I((TRIGI (LAMBDA (A) (MEMBER A (QUOTE (SIN COS)))))
(SUPERTRIG

(LAMBDA (EXP)

(COND

((FREE EXP) T)

((ATOM EXP) NIL)

([MEMBER (CAR EXP) (QUOTE (PLUS TIMESI))
(AND (SUPERTRIG (CADR EXP))

(OR (NULL (CDDR EXPI) (SUPERTRIG (CONS (CAR EXPI (CDDR EXP))))))

((MEMBER (CAR EXPI (QUOTE (EXPT LOG)))

(AND (SUPERTRIG (CAOR EXP)) (SUPERTRIG (CAODR EXP))))

((MEMBER (CAR EXP) (QUOTE (SIN COS TAN SEC COT CSC)))

(COND
((M2 (CADR EXP) TRIGARG NIL) T)

((M2

(CADR EXP)

(QUOTE (PLUS (COEFFPT (B FREEI (X VARP)) (CDEFFPT (A FREE))))
NIL)

(AND iSETQ NOTSAME T{ NIL))

(T (SUPERTRIG (CADR EXPl))))

(T (SUPERTRIG (CADR EXP))) Ill

(SUBST2 (LAMBDA (EXP PAT)

(COND

((NULL EXP) NIL)

((M2 EXP PAT NIL) VAR)

((ATOM EXP) EXP)

(T (CONS (SUBST2 (CAR EXP) PAT) (SUBST2 (CDR EXP) PAT)I) 1))
(MONSTERTRIG

(LAMBDA

(EXP VAR TRIGARG)

(PROG (NOTSAME W A B Y D)

(COND

((SUPERTRIG EXP) (GO A))

((NULL NOTSAME) (RETURN NIL))

((NOT (SETQ Y
(M2

EXP
(QUOTE (TIMES

(COEFFTT (A FREE{)

((B TRIG() (TIMES (X VARP) (COEFFTT (M FREE))))

((D TRIGI) (TIMES (X VARP) (COEFFTT (N FREE))))))

NIL)))

(GO B))
((NOT (AND

(MEMBER (SETQ B (CDR (SASSOC (QUOTE B) Yl))

(QUOTE iSIN COS)))

(MEMBER (SETQ D (CDR (SASSOC (QUOTE D) Y)))

(QUOTE (SIN COS)))))
(RETURN NIL))

((AND (EQ B (QUOTE SINII (EQ D (QUOTE SIN)))
(RETURN

(SIMPTIMES

234

{SUBVAR

(SUBLI S

Y

(QUOTE (A (DIFFERENCE

(QUOTIENT

ISIN {TIMES (DIFFERENCE M N) X))

(TIMES 2 {DIFFERENCE M N)))

{QUOTIENT (SIN (TIMES {PLUS M N) X))

(TIMES 2 {PLUS M N)) If|If))))

((AND (EQ B (QUOTE COS)) (EQ D (QUOTE COS)I)

{RETURN

(SIMPTIMES

(SUBVAR

(SUBLIS

Y

(QUOTE (A {PLUS

(QUOTIENT

{SIN {TIMES (DIFFERENCE M N) X))

(TIMES 2 (DIFFERENCE M N)))

(QUOTIENT (SIN (TIMES (PLUS M N) X)[
{TIMES 2 {PLUS M N)))))))))))

((OR (AND
(EQ B (QUOTE COS))

(SETQ W (CDR (SASSOC (QUOTE M) Y)))

(RPLACD (SASSOC (QUOTE M) Y) (CDR (SASSOC (QUOTE N) Y)))

(RPLACD (SASSOC (QUOTE N) Y) W))

T)

(RETURN

(SIMPTIMES

(SUBVAR

(SUBLI S

Y

(QUOTE (-1 A

{PLUS

{QUOTIENT

(COS (TIMES (DIFFERENCE M N) X))

(TIMES 2 (DIFFERENCE M N)))

(QUOTIENT (COS (TIMES (PLUS M N) X))

(TIMES 2 (PLUS M N))))I)))))))

(COND
((NOT

(SETQ

Y

(PROG2

(SETQ TRIGARG VAR)

(M2

EXP

(QUOTE (TIMES

(COEFFTT (A FREE))
((B TRIG1) (TIMES (X VARP} (COEFFTT (N INTEGERP))))

(COEFFTT (C SUPERTRIG)) I)

NIL))))

(RETURN NIL)))

(RETURN

(INTEGRATE

(EXPAND2

(LIST

(QUOTE TIMES)
(REPLACE Y (QUOTE C))

(COND

235

((EQ (SETQ B (REPLACE Y (QUOTE B))) (QUOTE COS))

(SUBST

WAR

(QUOTE X)

(SUPERCOSNX (REPLACE Y (QUOTE N)))))

(T (SUBST VAR (QUOTE X) (SUPERSINX (REPLACE Y (QUOTE N))))

VAR))

A

(SETQ W (SUBST2 EXP TRIGARG))

(SETQ B

(CDR (SASSOC (QUOTE B)

(M2

TRIGARG

(QUOTE (PLUS (COEFFPT (B FREE) (X VARP)) (COEFFPT (A FREE)))

NIL)))l

(R_TURN (SUBST TRIGARG VAR (TRIGINT (SIMPQUOTIENT (LIST W B)) VAR)

(TRIG2 (LAMBDA (AI (MEMBER A (QUOTE (SIN COS TA_I CCT SEC CSC)))))

DEFINE

(((SUPERSINX (LAMBDA (N)

((LAM_DA (1)

(EXPAND2 (LIST

(COND ((LESSP N O) -I)

(SUPERCOSNX (LAMbDA (N)

((LAMBDA (1) (EXPAND2

(COND ((LESSP N O) -I

ISINNX (LAMBDA (N)

(COND (EQUAL N I) (QUOTE ISIN X)))

T (LIST (QUOTE PLUS)

(LIST (QUOTE TIMES)

(QUOTE (SIN X))

(COSNX (SUB] N))

(LIST (QUOTE TIMES)

(QUOTE (COS X))

(SINNX (SUBI N)))))))

DEFINE

(EQUAL N I) (QUOTE

T (LIST (QUOTE PLUS)

ILIST (QUOTE

(QUOTE

(COSNX

(LIST (QUOTE

-I

(QUOTE

(SINNX

(QUOTE TIMES)

I

(S|NNX (TIMES I N))))

(T I)))))

(COSNX (TIMES I NI))

) (T I)))))

(COSNX (LAMBOA IN)

{CONO (COS XI))

TIMES)

(COS X))

(SUB! NI)

TIMES)

(SIN X))

(SUBI N|)))))))))

))

((IPOSEVEN (LAMBDA (A) lAND (EVEN A) (GREATERP A -1)}))

(TRIGFREE (LAMBDA (A)

(COND

((ATOM A) (NOT (MEMBER A (QUUTE (SIN* COS* SEC* TAN*)

(T IAND (TRIGFREE (CAR A)) (TRIGFREE (CDR A)))))))

IUNTR (LAMBDA (EXP)

(CUND

((ATOM EXP) EXP)

((EQ (CAR EXP) (QUOTE LOG)

(COND ((NULL (CDDR EXP))

(LIST (CAR EXP) (QUOTE E((UNTR (CADR EXP)))

(T (LIST (CAR EXP) (CADR EXP) (UNTR (CADDR EXP))

))))

236

((EQ (CAR EXP) (QUOTE MINUS)((LIST (QUOTE TIMES(-1 (UNTR {CADR EXP))))

{(EQ (CAR EXP) (QUOTE SORT))

{LIST (QUOTE EXPT({UNTR (CADR EXP)) O.SEO))

({EQ (CAR EXP) {QUOTE INTEGRAL)) {LIST ICAR EXP) (CAOR EXP) VAR))

(lEO (CAR EXP) {QUOTE DIFFERENCE((

(LIST {QUOTE PLUS(

(UNTR (CADR EXP))

(LIST (QUOTE TIMES(-I (UNTR (CADDR EXP)))))

((EQ (CAR EXP) (QUOTE QUOTIENT)(

(LIST (QUOIE TIMES)

(UNTR (CADR EXP))

{LIST {QUOTE EXPI) (UNTR (CADOR EXP)) -I))I

(T (MAPLIST EXP {FUNCTION (LAMBDA (A((UNTR {CAR A|))()))))))

DEFINE

(([TRANSL

{LAMBDA

(EXP)

(CONO

((NUMBERP EXP)

(PROG {TEMP)

(RETURN (COND

((FIXP EXP) EXP)

{{SETQ TEMP {INTEGERP EXP)) TEMP)

{(SETQ TEMP {DENOMFIND EXP')

(LIST {QUOTE QUOTIENT) [INTEGERP {TIMES TEMP EXP)I TEMP))

IT {ERROR (QUOIE TRANSLII) (()(

((ATOM EXP) EXP)

(IAND {MEMBER (CAR EXP) (QUOTE (PLUS TIMES)({

(GREATERP {LENGTH (CDR EXP)) 2))

{LIST

(CAR EXP)

(TRA,WSL (CADR EXP))

(TRANSL {CONS {CAR EXP) [CDDR EXP)))))

{(AND (EQ (CAR EXP) {QUOTE LOG)) (CDDR EXP))

(COND (lEO (CADR EXP) {QUOTE E)) {CONS [CAR EXPI (CDDR EXP)))

iT {LIST

{QUOTE QUOTIENT)

{LIST {QUOTE LOG) {TRANSL (CADDR EXP)))

{LIST {QUOTE LOG) {CADR EXP))))))

(T (MAPLIST EXP {FUNCTION (LAMBDA {A) (TRANSL (CAR AT)l))))))

(RAT1 (LAMBDA (EXP)

(PROG {BI NOTSAME)

{COND {(AND (NUMBERP EXP) [ZEROP EXP() {RETURN NIL)))

(SETQ BI (SUBST B (QUOTE 8) {QUOTE (EXPT B (N EVEN){)){

{RETURN (PROG2 {SETQ YY (RAT EXP)) (COND ((NOT NOTSAME{ YY) (T NIL)))))))

{RAT

(LAMBDA

(EXP)

(PROG (Y}

(RETURN

(COND

((EQ EXP A) (QUOTE X))

((ATOM EXP)

[CONO ((MEMBER EXP (QUOTE {SIN* COS* SEC* TAN*){{

(SETQ NOTSAME T))

(T EXP)))

((SETQ Y (M2 EXP BI NIL)) (F3 Y))

(T {CONS (CAR EXP)

(MAPLIST (CDR EXP) {FUNCTION (LAMBDA (G) {RAT (CAR G))))))))))|)

(F3 (LAMbDA {Y)

236

((EQ (CAR EXP) (QUOTE MINUS)) (LIST (qUOTE TIMES(-L (UNTR (CADR EXP))))

((EQ (CAR EXP) (QUOTE SQRT))

(LIST (QUOTE EXPT((UNTR (CADR EXP)) O.SEO))

((EQ (CAR EXP) (QUOTE INTEGRAL)) (LIST (CAR EXF) (CADR EXP) VAR})

((EQ (CAR EXP) (QUOTE DIFFERENCE)(

(LIST (QUOTE PLUS(

(UNTR (CADR EXF)(

(LIST (QUOTE TIMES(-I (UNTR (CAODR EXP)/)))

((EQ (CAR EXP((QUOTE QUOTIENT))

(LIST (QUOTE TIMES)

(UNTR (CADR EXF))

(LIST (QUOTE EXPI) (UNTR (CADOR EXP)) -1) 1_

(T (MAPLIST EXP (FUNCTION (LAMBD4 (A) (UNTR (CAR AJ 1())(l)lll

DEFINE

(((TRANSL

(LANBDA

(EXP)

(COND

((NUMBERP EXP(

(FROG (TEMP)

(RETURN (CON)

IIFIXR EXP) EXP)

((SETQ TEMP (INTEGERF EXP)) TEMP)

({SETQ TEMP (DENOMFIND EXPI)

(LIST (QUOTE QUOTIENT((INTEGERP (TIMES TEMP EXP)) TEMP))

(T (ERROR (QUOTE TRANSL)()))))

((ATOM EXP) EXP(

((AND (MEMBER (CAR EXP) (QUOTE (PLUS TIMES()(

(GREATERP (LENGTH (CDR EXP)) 2) ;

(LIST

(CAR EXP)

(TRA,WSL (CADR EXP))

(TRANSL (CONS (CAR EXP) (CDDR EXP()())

((AND (EQ (CAR EXP) (QUOTE LOG)) (CODR EXP))

(COND ((EQ (CADR EXP) (QUOTE E)) (CONS (CAR EXPl (CDOR EXP)))

(T (LIST

(QUOTE QUOTIENT)

(LIST (QUOTE LOG) (TRANSL (CADDR EXP)))

(LIST (QUOTE LOG) (GADR EXP))))))

(T (MAPLIST EXP (FUNCTION (LAMBDA (A) (TRANSL (CAR A)))))))))

(RAT1 (LAMBDA (EXPl

(FROG (B[NOTSAME)

(COND [(AND (NUMBERP EXP) (ZEROP EXP() (RETURN NIL)))

(SETQ B{ (SU_ST B (QUOTE B) (QUOTE (EXPT B (N EVEN)))()

(RETURN (PROG2 (SETQ YY (RAT EXP)) (COND ((NOT NOTSAME) YY) (T NIL)))))))

(RAT

(LAMBDA

(EXP)

(FROG (Y)

(RETURN

(COND

((EQ EXP A) (QUOTE X))

((ATOM EXP)

(COND ((MEMBER EXF (QUOTE (SIN* CGS_ SEE* TAMe)))

(SETQ NOTSAME T) (

(T EXP)))

((SETQ Y (M2 EXP B1 NIL)) (F3 Y)I

(T (CONS (CAR EXP)

(MAPLIST (CDR EXP) (FUNCTION {LAMBDA (G) (RAT (CAR G)))I))))))))

(F3 (LAMUO_ (Y_

237

(SUBST

C

(QUOTE C(

(SUBST

(QUOTIENT (CDR (SASSOC (QUOTE N) Y NIL)) 2)

(QUOTE N)

(QUOTE (EXPT (PLUS 1 (TIMES C" (EXPT X 2))) N)) ()))

(ODDI

(LAMBDA

{N)

(COND {(NOT (ZEROP (REMAINDER N 2)I)

(SETQ YZ

(SUBST

C

(QUOTE C)

(LIST

(QUOTE EXPT)

(_UOTE (PLUS I (TIMES C (EXPT X 2))))

(QUOTIENT (SUBI N) 2))))(

(1 NIL))))

(EVEN (LAMBDA (A) (AND INUMBERP A) (INTEGERP (QUOTIENT A 2)I)I)

(SUBVAR (LAMBDA (B) {SUBST VAR (QUOTE X) B)))

(TRIGINT

(LAMBDA

(EXP VAR(

(PROG (Y REPL YI Y2 YY Z M N C YZ A B)

(SETQ Y2

(SUBLIS (SUBVAR (QUOTE (((SIN X) • SIN*I

((COS X) • COS*)

((TAN X) • TAN*(

((COT X) EXPT TAN* -I)

{(SEC X) • SEC*)

)(CSC X) EXPT SEC_ -I)))(

EXP))

(SETQ Y1

(SETQ Y

(SIMP (SUBLIS (QUOTE ((TAN i TIMES SINo (EXPT COS_ -|)} ISECe EXPT COS* -I}))

Y2))))

(CONO ((NULL (SETQ Z

(M2

Y

fQUOTE (TIMES

(COEFFTT (B TRIGFREE))

(_XP[SIN* [M POSEVEN))

(EXPT COS* (N POSEVEN)) })

NIL)))

(GO LI}))

(SETQ M (CDR (SASSOC (QUOTE M(Z)))

(SEIQ N (CDR (SASSOC (QUOTE N) Z)))

(SETQ A

(INTEGERP (lIMES

O.5EO

(COND ((LESSP M N) I) (T -1))

(PLUS N (TIMES -I M}))))

(SETQ Z (CONS (CONS (QUOTE A) A) Z))

(RETURN

(SIMP

(LIST

(QUOTE TIMES(

(COR (SASSOC (QUOTE B) Z))

0.5EO

238

Ll

GET3

GET(

(SUBST

(LIST (QUOTE TIMES} 2 VAR)

(QUOTE XI

(INTEGRATE

(SIMP

(COND

((LESSP M N)

(SUBLIS Z

(QUOTE (TINES

IEXPT (TIMES 0. SEO ISIN X)) M)

IEXPT (PLUS 0.5EO (TIMES 0.5EO (COS X)II AI I)l}

IT {SUBLIS Z

(QUOTE (TIMES

(EXPT (TIMES O.5EO (SIN X)) N)

(EXPT {PLUS O.5EO (TIMES -0.SE0 ICOS XI)) A)))Ill)

IQUOTE X))Ill)

(SETQ C -i)

{SEIQ A (QUOTE SIN*I)

(SETQ B (QUOTE COS*))

(COND ((AND
(M2 Y (QUUTE (COEFFPT (C RAT[) (EXPT COS* (N ODDI)I)) NIL)

(SET_ REPL (LIST (QUOTE SIN) VAR)))

(GO GETOUT)))

(SETQ A B)

(SETQ B (QUUTE SIN*))

(COND ({AND

(M2 Y (QUOTE (COEFFPT (C RATI) (EXPT SIN* IN ODD1) NIL)

ISETQ REPL (LIST (QUOTE COS) VAR)) I

(GO GET3)))

(SETQ Y

(SIMP (SUBLIS (QUOTE ((SIN* TIMES TAN* (EXPT SEE* -I

Y2 Ill

(SETQ C 1)

(SETQ A (QUOTE TAN*I)

(SETQ B (QUOTE SEC*))

(COND ((AND (RAIl YI (SETQ REPL (LIST {QUOTE TANI VAR) I (GO GETI)))

(SETQ A _)

(SETQ B (QUOTE TAN*)}

(COND ((AND

(M2 Y (QUOTE (COEFFPT (C RATt) {EXPT TAN* (N ODDIIII) NIL)

{SETQ REPL ILIST {QUOTE SEE} VAR)I)

(GO GETOUT))}

(SETQ Y

(SIMP (SUBLIS (QUOTE {(SIN* TIMES 2 X (EXPT (PLUS 1 (EXPT X 2)} -I)I

(COS*

TIMES

(PLUS I {TIMES -I (EXPT X 2)))

{EXPT (PLUS I (EXPT X 2}) -I))))

YI)))

(SETQ Y

(LIST

(QUOTE TIMES)

Y

(QUOTE ITIMES 2 (EXPT (PLUS I {EXPT X 2I) -1)))))

(SETQ REPL (SUBVAR (QUOTE {QUOTIENT (SIN X) (PLUS I {COS X))))|)

(GO GET2)

{SETQ Y {LIST (QUOTE TIMES) -[YY YZ)I

(GO GET2)

(COS* EXPT SEC* -I)))

239

(SETQ Y

{LIST {QUOTE TIMES) {QUOTE {EXPT {PLUS I (EXPT X 2)) -I)) YY))
{GO GET2)

GETOUT

{SETQ Y {LISI {QUOTE TIMES) YY YZ))
GET2

{SETQ Y (SIMP Y))

{RETURN (SIMP {SUBST REPL {QUOTE X| {INTEGRATE Y {QUOTE X))))))))))

DEFINE

(((ALGORT

(LAMBDA

(RI P1 VARI)

{PROG {R OLDS10LDREST P VAR PD Q S SI $2 ANS At A2 A3 NUM A M B REST)
(CSETQ VARLIST {LIST VAR[))

(NEWVAR Rll

{NEWVAR PI)

(SETQ R (REP RI))

(SETQ P (REP PI))

(SETQ VAR {REP VARI))

(SETQ PD {PFDERIVATIVE P))

(SETQ Q {DENOMINATORF R))

(SETQ $1 (NUMERATORF R))

LOOP

(COND {(NOT (POLP Sl)) {GO A)))

{SETQ B (LIST {CAR $I)))

(SETQ S (SIMPOL {CDR $1)))

(SETQ M (SUB1 {LENGTH $1)))
B

(SETQ ANS {PLUSF A ANS))

{SETQ OLDS1 St)

(SETQ OLDREST REST)

(SETQ A (QUOTIENTF {TIMESF B {POLEXPT VAR M)) {TIMESF PD O}))

(SETQ A3 (TIMESF A {PFOERIVATIVE Q))I

(SETQ A2

{QUOTIENTF (MINUSF (TIMESF B (POLDERIVATIVE {POLEXPT VAR M))))

PD))

(SETQ A1

{QUOTIENTF {TIMESF (TIMESF B (POLEXPT VAR M)) (PFDERIVATIVE PD))
(POLEXPT PD 2) {)

(SETQ $2 (SEP (PLUSF [PLUSF S REST) (PLUSF AI (PLUSF A2 A3)I)))

(SETQ $1 {CAR $2))

{SETQ REST (CDR $2))

(COND ($1 (GO LOOP)))

{SETQ REST {SIMPSIMP (TRANS REST){{

{COND {(AND {NUMBERP REST) (ZEROP REST){

(RETURN {SIMPSIMP {LIST

{QUOTE TIMES)

(TRANS {PLUSF A ANS))

(LIST (QUOTE EXPT) (QUOTE El P1))1)))
{RETURN

(PLUSSIMP

{LIST

(QUOTE PLUS)

{SIMPSIMP {LIST

{QUOTE TIMES)
(TRANS ANS)

(LIST {QUOTE EXPT) (QUOTE E) P1)))

(LIST

{QUOTE INTEGRAL)

{LIST

240

(QUOTETIMES)

(COND ((NOT OLOREST} (TRANS (QUOTIENTF OLOSI QD))

(T (TRANS {QUOTIENTF (COR $2) QI)) D

(LIST (QUOTE EXPT) (QUOTE E) PlI)IlID

{SETQ B {CONS (LIST (CAAR Slid (COR SliD)

(SETQ S
{COND ((SETQ S (SIMPOL (CDAR $1))) (CONS S (CDR SIll) (T SIT)

(SETQ M (SUBI (LENGTH (CAR SI)))!

{GO B))))))

DEFINE

(((SEP {LAMBDA (R)

{PROG (S D NI
(COND ((POLP R| (RETURN (CONS R NIL)OIl

(SETQ N INUMERATORF RID

(SETQ D (DENOMINATORF R))
(COND ((AND (ONEP (LENGTH N)I (ONEP (LENGTH DID)

(RETURN (CONS R NILID D)

(SETQ S (POLO(VIDE N DID

(RETURN (CONS (CAR S| (QUOTIENTF (CDR SD D))) Ill))

DEFINE

(((SUPERALGORT (LAMBDA (R P VAR)
(PROG NIL

(FILEWRITE (QUOTE MANOVE}

(QUOTE ANSI

(ALGORT R P VAR))

(CHAIN (QUOTE FIR MOSES}))))liD)

DEFINE

({(MASTER (LAMBDA (Y)

(PROG (FLIST)

(CSETQ VARLIST (LIST (CAR Y)D)

(NEWVAR (CDR YI)

(CSETQ REPSWITCH NIL)

{FILEWRITE (QUOTE MANOVE)

{QUOTE ANSI

(SIMPSIMP (FPROG (REP {CDR Y)))))

{CHAIN (QUOTE ((R MOSES)TOO)))))

DEFINE

(({RAT8PRIME (LAMBDA (CO (AND (RAT8 C) (OR (NOT {NUMBERP CI) (NOT (ZEROP C))DII)

(FIN; {LAMBDA {EXP)
(COND ((ATOM EXP) (MEMBER EXP {QUOTE (LOG INTEGRAL ARCTAN)I))

(T (OR (FIND {CAR EXPI) (FIND (CDR EXP)))) I))

(RATLGG

(LAMBDA

(EXP VAR FORM)

(PROG (A B C CC D Y Z W)

(SETQ Y FORM)

(SETQ B (CDR (SASSOC (QUOTE B) Y))I

(SETQ C {CDR (SASSOC (QUOTE CI Y))|

(SETQ Y (INTEGRATE C VARDD

(COND ({FIND Y) (RETURN NIL)I)

(SETQ D (DIFFI (CDR (SASSOC (QUOTE A) FORM)) VARDI

{COND ((EQ (CADAR FORM) (QUOTE ARCSIN)) (GO BID)

C

(SETQ Z (INTEGRATE (SIMPTIMES (LIST Y DO) VARII

A

(SETQ D (CDR (SASSOC (QUOTE AI FORM))D

241

(RETURN(SIMP{LIST(QUOTEDIFFERENCE) (LIST (QUOTE TIMES) Y D) Z)))
8

{COND

((NOT

(SETQ

W

(M2

D

(QUOTE

(PLUS

(COEFFPT

(C TRUEI)

(EXPT

(CC (LAMBDA (CC)
(MI CC

(QUOTE (PLUS (COEFFPT (B FREE{ (EXPT IX VARP) 2))
(COEFFP (A FREE))))I))

IN INTEGERP1))))))))

{GO C)))

{SETQ CC (CDR (SASSOC {QUOTE CC) W)))

(SETQ Z (TRIGSQRT (LIST (QUOTE TIMESI Y D) VAR CC W))

(CUND ((NI_I.L Z) {RETURN NIL)))
(GO A))))))

DEFINE

(((FIND! (LAMBDA (Y A)
(COND

{{EQ Y A) T)

{(ATOM Y) NIL)

IT {OR (FINDI (CAR Y) A) (FIND1 (CDR YI A))) I))
(MAXPARTS

(LAMBDA

(A)

{PROG (Y)

(SETQ Y l)

LOOP

(SETQ Y

{MAX Y

(COND ({EQ (CAR Y) {QUOTE EXPT))

(COND ((NUMBERP {CADDAR Y))

{CuND ((LESSP (CADDAR Y) O) (MINUS (CADDAR Y)))

(T (CAODAR Y))))

(T I)))

(T I))))

(SETQ A (COR A))

(COND ((NULL A) (RETURN Y)))
(GO LUOP))))

INTEGRATION-BY-PARTS

{PARTS

(LAMBDA

(EXP VAR(

(PROG (A B Y Z W G TOPPART)

(COND {_OPARTS {RETURN NIL){)

(COND I(NOT (GET (QUOTE TOP) (QUOTE APVAL)))

(CSETQ TOP (SETQ TOPPART (GENSYMII)))

(SETQ Y

(M2

242

EXP

(QUOTE (TIMES (COEFFTT (A FREEII (COEFFTT (B TRUEI)))

NIL))

(SETQ A (CDR (SASSOC (QUOTE A) Y)))

(SETQ B (CDR (SASSOC (QUOTE B) Y)|)

(COND ((NOT (EQ (CAR B) (QUOTE TIMES)I) (RETURN NIL)))

(COND

((NOT IGET (QUOTE MAXPARTS) (QUOTE APVAL)))

(AND (CSETQ MAXPARTS (TIMES 2 (MAXPARTS B)))

(CSET_ NUMPARTS 1)))

((AND (CSETQ NUMPARTS (ADO! NUMPARTS))

(GREATERP NUMPARTS MAXPARTS))

(RETURN NIL}))

B

(SETQ Y (CDR B))

LOOP

(CSETQ NOPARTS T)

{SETQ Z (INTEGRATE (CAR Y) VAR))

(CSETQ NOPARTS NIL)

(COND ((FINDI Z (QUOTE INTEGRAL)) (GO A)))

(SETQ G (CHOICE (CAR Y) B))

(SETQ W (INTEGRATE (SIMPTIMES (LIST (OIFF[G VAR) Z)) VAR))

(COND ((FIND(W (QUOTE INTEGRAL)) (GO A)))

(SETQ

Y

(SIMPTIMES (LIST A (SIMPDIFFERENCE (LIST {SIMPTIMES (LIST G Z)) W})) })

(RETURN (CONO ((EQ TOPPART TOP)

{PROG23

(REMPROP (QUOTE TOP) (QUOTE APVAL))

Y

(REMPROP (QUOTE MAXPARTS) (QUOTE APVAL))))

"T Y)))

A

(SETQ Y (CDR Y))

(COND ((NULL Y) (RETURN NIL)))

(CONO ((NOT (EQ TOP TOPPART)) (GO LCOP)))

(CSETQ MAXPARTS (TIMES 2 (MAXPARTS B)))

(CSETQ NUMPARTS I)

(GO LOOP))Ill)

CSET

(NUMPARTS I)

CSET

(NOPARTS NIL}

SOLDIER

DEFINE

(((SOL

(LAMBOA

(EXP INDVAR OEPVAR)

(SUBST

INDVAR

(QUOTE X}

(SUBST

DEPVAR

(QUOTE Y)

243

(SOLDIER
(SUBST

(QUOTE X)
[NDVAR
(SUBST

(QUOTE Y)
DEPVAR

(SUBST

(QUOTE DX)

(INTERN (MKNAM (t.... CLEARBUFF) (PACK (QUOTE D)) (PACK INOVAR))))
(SUBST

(QUOTE DY}

(INTERN (MKNAM {OR (CLEARBUFF) (PACK (QUOTE D)) (PACK DEPVAR))))
(SUBST

(QUOTE YPR)

(INTERN (MKNAM (OR

(CLEARBUFF)

(PACK DEPVAR)

(PACK (QUOTE P))

(PACK (QUOTE R)))))
EXP)))))I))))

(SOLCON

(LANBDA
(FXP INDVAR DEPVAR X Y)

({LAMBDA {Z)

((LAMBDA (W)

(COND ((NULL W) NIL)

(T (LIST

(QUOTE EQUAL)

(SIMP (SUBST Y DEPVAR (SUBST X INDVAR W)))

W))))

(COND
((NULL Z)NIL)

((EQ (CADR Z) (QUOTE CO)) (CADDR Z))
(T (CADR Z)))))

(SOL EXP INDVAR DEPVAR))))

(SOLDIER

(LAMBDA

(EXP)

(PROG (W EXPI EXP2)

{COND

{(SETQ W

(M2

EXP

(QUOTE (PLUS (COEFFPT (A TRUE) DY) (COEFFPT (B TRUE) 0X)))

NIL))

(GO A))

((SETQ W

(M2

EXP

(QUOTE (PLUS (COEFFPT (A TRUE) YPR) (COEFFPT (B TRUE))))
NIL))

NIL)

(T (RETURN NIL)))

(SETQ EXP1 (REPLACE W (QUOTE (PLUS (TIMES A DY) (TIMES 6 DX)))))

(SET_ EXP2 EXP)

(GO B)

(SETQ EXP2 (REPLACE W (QUOTE (PLUS (TIMES A YPR) B))))

(SETQ EXPI EXP)

244

(COND ((TRYSOLD (QUOTE (LINEAk

SEP

EXACT

HOMOGTYPE

BERNOULLI

LINEARCOEFF

ALMOSTLINEAR

REVERSEVAR

XNYI))

[QUOTE (EXPI EXPI EXPI EXPI EXP2 EXP2 EXPI EXPI EXP2)))

[RETURN W))

(T (RETURN NIL)) l)))

(TRYSOLO (LAMBDA (A B)

(COND

[(NULL A) NIL)

((SETQ W ((CAR A) {COND [(EQ (CAR BI (QUOTE EXP1)) EXPI) (T EXP21))) W)

[T (TRYSOLD (CDR A) (CDR B))))}))|

DEFINE

(([FACTORXY

(LAMBDA

(EXP)

(CDND

{(NOT {EQ {CAR EXP) (QUOTE TIMES))) EXP)

(T

{SIMPTIMES

(MAPLIST

(CDR EXP)

(FUNCTION {LAMBDA (EXPI

(COND

([EQ {CAAR EXP) (QUOTE PLUS)I (FACTORXY2 (CAR EXP|))

((AND (EQ (CAAR EXP) (QUOTE EXPT))

(EQ (CAADAR EXP) (QUOTE PLUSI))

(SIMPEXPT (LIST (FACTORXY2 (CADAR EXP)) (CADDAR EXP))I)

IT {CAR EXP)))))})))))

(FACTORXY2

(LAMBDA

(EXP)

(PROG (Z IND RES W)

(SET_ Z (CDR EXP))

(SETQ IND {QUOTE X))

LOOP

(COND

((NOT

(SETQ

W

{M2

(CAR Z)

[QUOTE

(COEFFT

{B TRUE)

(EXPT

(A MI IND)

[N (FUNCTION (LAMBDA (N)

(AND {NUMBERP N) (GREATERP N 0.98999999E0))))))))

NIL }))

(GO NO)))

(SETQ RES

[CONS (REPLACE W (QUOTE (TIMES B (EXPT A (PLUS N -i)|)|} RES))

(COND ((NOT ISETQ Z (CDR Z)))

(RETURN (SIMPTIMES (LIST IND (SIMPPLUS RESI)))))

245

{GO LOOP)

NO

(CONO ((EQ INO (QUOTE YI) {RETURN EXP)))

(SETQ IND {QUOTE Y)]

[SETQ Z [CDR EXP])

(SETQ RES NIL)

(GO LOOP)))))]

DEFINE

(((SIMPEXPT

(LAM_DA

{EXP]

(PROG (A B)

(SETQ B (SIMP (CADR EXP)))

(SETQ A (SIMP {CAR EXP)))

(COND

((EQP A O))RETURN 0))

((AND

(EG (CAR A) (QUOTE EXPT))

[SETQ B (SIMPTIMES (LIST B (CAODR A))))

(SETQ A (CADR A))

NIL)

NIL)

({EQP B O] (RETURN 1))

((EQP B I) (RETURN A))

((EQP A I] {RETURN IT]

((AND [NUMBERP A) (NUMBERP B)]
(RETURN (CUND

((NOT EXPTINO) (EXPT A B))

((AND [FIXP B) (GREATERP B -i)) (EXPT A B))

(T (LIST (QUOTE EXPT) A B)))))

(EQ (CAR A) (QUOTE TIMES))

(RETURN (CONS (QUOTE TIMES) (EXPTLOOP (CDR A])}))

(AND EXPTSUM [EQ (CAR B) (QUCTE PLUS)))
(RETURN

(CONS

(QUOTE TIMES)

(MAPLIST (CDR B)

(FUNCTION (LAMBDA (C) (SIMPEXPT (LIST A [CAR El))))))))
{NOT (ATOM B))

(RETURN

(PROG (W]

(RETURN

(COND

((NOT (SETQ W

(M2

B

(QUOTE (PLUS (CEEFFT (C TRUE1)

(LOG (BI TRUE) (A TRUE)))

(CDEFFP [E TRUE))))

NIL)))

(LIST (EUOTE EXPT) A B))
((NOT (EQUAL A (SUBLIS W (QUOTE 81))))

(LIST (_UOTE EXPT) A B))

(T

(SIMPTIMES (LIST

[SIMPEXPT (LIST (SUBLIS W {QUOTE A))

(SUBLIS W (QUOTE C))))

(SIMPEXPT (LIST A {SUBLIS W (QUOTE E)))))l))]))))

(RETURN (LIST {QUOTE EXPT) A B))))l
[EXPTLOOP

246

(LAMBDA

(A)

(PROG23

(CSETQ SIMPIND T)

(MAPLIST A (FUNCTION (LAMBDA (C) (SIMPEXPT (LIST {CAR C) B)))I)

(CSETQ SIMPIND NIL))()))

DEFINE

(((LINEAR

(LAMBDA

(EXP)

(PROG (Y Z W)

(RETURN

(COND

((NOT

(SETQ

W

(MZ

EXP

(QUOTE

(PLUS

(COEFFPT {F FREEX (QUOTE Y)) 0Y)

(COEFFPT (A M1

(QUOTE (PLUS (COEFFPT (G FREEX (QUOTE YI) Y)

(COEFFPT (H FREEX {QUOTE Y))))))

DX)))

NIL)))

(COND ((AND (THEREXNY EXP I)

(NOT (M2 EXP (SETQ W (EXPAND2 EXP)) NIL)))

(LINEAR W) }

[T NIL)))

IT

(LIST

(QUOTE EQUAL)

(QUOTE CO}
(SIMPPLUS

(LIST
(LIST

(QUOTE TIMES)

(QUOTE Y)

(SETQ

Z

(SIMPEXPT

(LIST

(QUOTE E)

(SIN (SIMPQUOTIENT (LIST (REPLACE W (QUOTE G)

(REPLACE W (QUOTE F))))

(QUOTE X))))))

(SIN

(SIMPTIMES (LIST Z

(SIMPQUOTIENT (LIST (REPLACE W (QUOTE H))

(REPLACE W (QUOTE F))))))

(QUOTE X))))))))))}

(THEREXNY (LAMBDA (EXP N) (EQUAL N (COUNTY EXP))))

(COUNTY (LAMBDA (EXP)

(COND ((ATOM EXP) (CONO ((EQ EXP (QUOTE Y)) I) IT O)))

(T (PLUS (COUNTY (CAR EXP)) (COUNTY (CDR EXP)))))))))

OEF INE
(((SEP

(LAMBDA

247

{EXP)

{PROG {W)

{RETURN

(COND

{{SETQ W

(M2

(PRUG23 (CSETQ EXPTSUM T) (SIMP EXP) (CSETQ EXPTSUM NIL))

{QUOTE (PLUS

(TIMES

DX

(COEFFTT (M FREEX {QUOTE Xl)

(COEFFTT (R FREEX (QUOTE Y)l)
(TIMES

DY

{COEFFTT {N FREEX {QUOTE X))

(COEFFTT {S FREEX {QUOTE Yll)))

NIL))

(LIST

{QUOTE EQUAL)

{SIMPPLUS {LIST

(SIN (SUBLIS W {QUOTE {QUOTIENT R S))| (qUOTE X)}

{SIN (SUBLIS W {QUOTE (QUOTIENT N M))) {QUOTE Y))))

(QUOTE CO)))
{T NIL))))))

{FREEX (LAMBDA (A VAR)

(COND {{ATOM A) (NOT {EQ A VAR|))

{T {AND (FREEX (CAR A) VAR) (FREEX (CDR A) VAR))))))|)

DEFINE

({{EXACT

(LAMBDA

{EXP)

(PROG (H P O DPDY DQDX Y FI)

(COND ((NOT (SETQ W
(M2

EXP

{QUOTE IPLUS {COEFFPT {P TRUE) DX) (COEFFPT (Q TRUE) DY)))
NIL)))

(RETURN NIL}))

{SETQ P {SUBLIS w (QUOTE P)|)

(SETQ Q {SUBLIS W {QUOTE Q)))

{SETQ DPDY {DIFF1 P {QUOTE Y)))

{SETQ DQDX {OIFFI Q (QUOTE X)))

(COND ((NOT (M2 OPDY DQDX NIL)) {GO A))}

OUT

{SETQ Y (SIN P (QUOTE X))|

{RETURN

(LIST

{QUOTE EQUAL)

(_UOTE CO)
(SIMPPLUS

(LIST

Y

{SIN

{EXPAND2 {SIMPDIFFERENCE (LIST Q (DIFFI Y (QUOTE Y)))))

{QUOTE Y))))))

A

(COND

{{NOT
{FREEX

{SETQ F1

248

(SIMPQUOTIENT (LIST (SIMPDIFFERENCE (LIST DPDY DQDX)) Q|))

{QUOTE YI))

(GO B)))

(SETQ Y (SIMPEXPT (LIST {QUOTE E) (SIN FI {_UOTE X)))))

{SETQ P {SIMPTIMES {LIST Y P))}
(SETQ O (SIMPTIMES (LIST Y Q)I|

{GO OUT)

(COND

((NOT

{FREEX
(SET_ F1
(SIMPQUOTIENT {LIST (SIMPDIFFERENCE {LIST DQDX DPDY)) P)))

(QUOTE X)))

{GO C)))

(SETQ Y (SIMPEXPT (LIST (QUOTE E) (SIN FI {QUOTE YI))))

{SETQ P (SIMPTIMES (LIST Y P))}

(SETQ Q {SIMPTIMES (LIST Y Q))}

(GO OUT)

(COND ((NOT {AND (M2 DPDY (SIMPMINUS (LIST DQDX)) NIL}

(M2 (DIFFI P (QUOTE X}) (DIFFI Q (QUOTE Y)) NIL)))
{RETURN NIL)))

(SET_ Y
(SINPPLUS (LIST (SIMPTIMES {LIST P P)l (SIMPTIMES (LIST Q QI))))

(SETQ P {SIMPQUOTIENT ILIST P Y)))

{SETQ Q (SIMPQUOTIENT {LIST Q Y))I

(GO uUT))])))

DEFINE

(((BERNOULLI

{LAMBDA

(EXP)
{PROG {W)

(RETURN
(COND

({NOT
(SET_

{M2
EXP
(QUOTE

(PLUS

[COEFFPT (B TRUE) YPR)

(COEFFPT {P FREEX {_UOTE Y)) Y)

(COEFFPT

(Q FREEX (QUOTE Y))

(EXPT Y

(N {LAMBDA (A)

(AND (NUMBERP A} (NeT (ZEROP A})))}))|)

NIL)))

{COND (IAND (THEREXNY EXP 2)

(NOT (M2 EXP (SETQ W (EXPAND2 EXP)) NIL)|)

(BERNOULLI W))

(T NIL)))

({FREEX (REPLACE W (QUOTE BID (QUOTE Y))

({LAMSDA

(P _ NI)

(SUBST
(SIMPEXPT (LIST (QUOTE Y) NI))

(QUOTE Y)

249

DEFINE
(((HOMOGTYPE

(LAMBDA

{EXP)

(LINEAR (SIMPPLUS {LIST (QUOTE DY)
{LIST

{QUOTE TIMES}

{QUOTE DX)

{LIST

{QUOTE PLUS)

{LIST {QUOTE TIMES) NI P {QUOTE Y)}

{LIST {QUOTE TIMES) NI Q)))If)))

(REPLACE W {QUOTE {QUOTIENT P Bill

(REPLACE W {QUOTE {QUOTIENT Q B)))

(SIMPOIFFERENCE {LIST I (SUBLIS W (QUOTE N))}} Ill)fill)

(PROG (Y Z W)

(COND

((NOT (SETQ W

{M2

EXP

{QUOTE (PLUS {COEFFPT (P TRUE) DX) (COEFFPT (Q TRUE) DY)))

NIL l))

(RETURN NIL))

{(NOT (AND

{SETQ Z {HOMOG (SUBLIS W (QUOTE Pill}

(SETQ Y (HOMOG {SUBLIS W IQUOTE Q))))
(EQP Y Z) }}

{RETURN NIL))
{T

(RETURN

(LIST

{QUOTE EQUAL)

(LIST

(QUOTE PLUS}

(QUOTE (LOG E XI)

(SIMP

(SUBST

(QUOTE (QUOTIENT Y X))

{QUOTE Y)
(SIN

(SIMPQUOTIENT

(LIST

{SETQ Y

{SIMP {SUBST 1 (QUOTE X) {SUBLIS W (QUOTE Q))))}

(SIMPPLUS (LIST

(SIMP (SUBST I (QUOTE X} {SUBLIS W (QUOTE P}}) }

{SIMPTIMES (LIST {QUOTE Y) Y))))))

(QUOTE Y)))})

(QUOTE CO)))))}))

(HOMOG {LAMBDA (EXP)

(PROG (NOThOM Y)

{SETQ Y (HOMOGEN EXP)I

{COND (NOTHOM (RETURN NIL}} (T (RETURN Y))))))
{hOMOGEN

(LAMBDA

(EXP}

(COND

((ATOM EXP) {COND {{EQ EXP (QUOTE Y)} I} ({EQ EXP (QUOTE X)) l) (T O)))

{(EQ {CAR EXP) (QUOTE TIMES}}

(EVAL (CONS {QUOTE PLUS)

250

(MAPLIST (CDR EXP) (FUNCTION ILAMBDA (C) (HOMOGEN {CAR C))))))

(ALIST)))

(|EQ (CAR EXP) (QUOTE PLUS))

((LAMBDA (Y)

(PROG (Z)

(SETQ Z (HOMOGEN (CAR YI))

LOOP

(SETQ Y (CDR Y))

(COND

((NULL Y) (RETURN Z))

((NOT (EQUAL Z (HOMOGEN (CAR Y))))

(RETURN IPROG2 (SETQ NOTHOM T) -I000)))

(T (GO LOOP)))))

(CDR EXP) |)
((EQ (CAR EXP) (QUOTE EXPT))

(COND
((NUMBERP (CADDR EXP)) (TIMES (HOMOGEN (CADR EXP)) (CADOR EXP)))

(IAND (ZEROP (HOMOGEN (CADR EXP))) (ZEROP (HOMOGEN (CADDR EXP)))) 0)

(T (PROG2 (SETQ NOTHOM T) -1000))))

((EQ (CAR EXP) (QUOTE LOG))

(COND ((ZEROP IHOMOGEN (CADDR EXP))) 0)

(T (PROG2 (SETQ NOTHOM T) -1000))))

((ZEROP (HOMOGEN (CADR EXP))) 0)

(T (PROG2 [SETQ NOTHOM T) -1000)))))))

DEFINE

(((ALMOSTLINEAR

(LAMBDA

(EXP)

(PROG (W D DDOY)

(RETURN

(COND

{(NULL

(SETQ

W

(M2

EXP

(QUOTE

(PLUS

(TIMES DY (COEFFTT (A TRUE)))

(TIMES

DX

(PLUS

(TIMES

(COEFFTT (C FREEX (QUOTE Y)))

(COEFFTT

(D (FUNCTION (LAMBDA (A) (NOT (FREEX A (QUOTE Y)))) I)))

(COEFFPP (E FREEX IQUOTE Y)))))))

NIL)))

NIL)

((EQUAL 0

(SETQ DDDY
(DIFF1 (SETQ D (REPLACE W (QUOTE D))) (QUOTE Y)))|

NIL)

((NOT (EQUAL O (DIFFt DDDY (QUOTE X)))) NIL)

(T

(SUBST

O

(QUOTE Y)

(LINEAR
(REPLACE

251

{CONS (CONS {QUOTE B)

(SIMPQUOTIENT {LIST (REPLACE W (QUOTE A)) DDDY)))

W|

{QUOTE

(PLUS

(TIMES BDY)

(TIMES DX

(PLUS

E

(TIMES C Y)

{TIMES -I B (EVAL {DIFFI {QUOTE D} {QUOTE X))))))l))l)}llI)lI)

DEFINE

(((ZEROP[(LAMBDA (A) (AND (NUMBERP A] {ZEROP A))))

(FREEXY (LAMBDA (A) (AND (FREEX A {QUOTE XI((FREEX A {QUOTE Y}||)|

{LINEARCOEFF

(LAMfiDA

(EXP}

{PROG (I_O W A B APR 6PR)

(RETURN

(CONO

((NOT (ELEMLIN EXP)) NIL)

((OR

(AND

{ZEROPI (SETQ A (SUBLIS W {QUOTE A())I

(ZEROPI (SETQ B (SUBLIS W (QUOTE B)))()

IAND

{ZEROPI {SETQ APR {SUBLIS W (QUOTE APR)I})

{ZEROP1 (SETQ BPR (SUBLIS W (QUOTE BPRII)})

(ZERORI (SIMPDIFFERENCE (LIST (SIMPTIMES (LIST A BPR))

(SIMPTIMES {LIST APR B)))){)

(RETURN NIL))

IT

(REPLACE

(REPLACE

NIL

(QUOTE

((X

EVAL

(QUOTE*

(REPLACE

W

{QUOTE (PLUS X

(MINUS {QUOTIENT

(DIFFERENCE {TIMES BPR C)

(TIMES B CPR))

(DIFFERENCE {TIMES APR B}

(TIMES A BPR}))))})I)

{Y

EVAL

(QUOTE*

{REPLACE

W

(QUOTE (PLUS Y

(MINUS {QUOTIENT

(DIFFERENCE (TIMES A CRRI

(TIMES APR C) {

{DIFFERENCE {TIMES APR B)

(TIMES A BPR| I)()l))))))

{HOMOGTYPE (SUBSTLIN EXP{))})))))

(ELEMLIN

252

(LAMBDA
(EXP)
((LANBDA (Y)

(COND ((NULL Y) NIL)
(T (ELEMLIN1 (REPLACE Y (QUOTE (QUOTIENT A B)}))())

(M2 EXP (QUOTE (PLUS (COEFFPT (B TRUE) YPR) (COEFFPT IA TRUE}D|) NIL|)))

(SUBSTLIN
(LAMBDA

(EXP)
(LIST

(QUOTE PLUS(
(QUOTE DY)
(SIMPIIMES

(LIST

(QUOTE DX)

(SUBSTLINI (REPLACE (M2

EXP
(QUOTE (PLUS (COEFFPT (B TRUE(YPR) (COEFFPT (A TRUED}))

NIL)

(QUOTE (QUOTIENT A B))))()))|

(ELEMLINI

(LAMBDA

(EXP)

(COND

((FREEXY EXP) T)

((SETQ
W
(M2

EXP
(COND

lIND IND)
(T

(QUOTE (TIMES
(COEFFTT (AA FREEXY))

(EXPT (PLUS

(COEFFPT (A FREEXY) X)

(COEFFPT (B FREEXY) Y)

(C FREEXY))

(N NUMBERP))

(EXPT

(PLUS
(COEFFPT (APR FREEXY) X)

(COEFFPT (SPR FREEXY) Y)

(CPR FREEXY))

(M (FUNCTION (LAMBDA (M N) (EQUAL M (MINUS N)))) N))))))

NIL))

(COND lIND IND) iT (SETQ IND EXP)))]

((ATOM EXP) NIL)

iT (AND (ELEMLINI (CAR EXP)) (ELEMLINI (CDR EXP))|))))

(SUBSTLIN1

(LAMBDA

(EXP)
[CUND

((FREEXY EXP) T)
((M2 EXP INO)

(SIMP (SUBLIS W

(QUOTE (TIMES

AA
(EXPT (PLUS (TIMES A X) (TIMES B Y)) N)

(EXP[(PLUS (TIMES APR X) (TIMES BPR Y)) (MINUS N)))))))

iT (MAPLIST EXP (FUNCTION (LAMBDA (C) (SUBSTLINI (CAR CI))})))))))

253

DEFINE

(((XNYI

(LAMBDA

(EXP)

(PROG (W C H FX S A B N)

(COND ((NOT (SETQ W

(M2

EXP

(QUOTE (PLUS (CDEFFPT (A TRUE(YPR) (COEFFPT (B TRUE)(((
NIL ())

(RETURN NIL) ()

(SETQ C (REPLACE W (QUOTE (QUOTIENT (MINUS B) A)))I

(SETQ
H

(CONO

((EQ (CAR C) (QUOTE PLUS))

(SIMPPLUS

(MAPLIST

(CDR C)

(FUNCTION (LAMBDA (G)

(SIMPTIMES (LIST (QUOTE X) (QUOTE (EXPT Y -1)} (CAR G))))))))

(T (SIMPTIMES (LIST (QUOTE X((QUOTE (EXPT Y -t() C))I))
(SETQ FX (QUOTE (TIMES (EXPT X N) Y)))

(SETQ H (FACTORXY H)}

(SETQ

S

(EXPAND2

(SIMPOIFFERENCE (LIST

(SIMPTIMES (LIST (DIFFI H (QUOTE X)) (DIFF1 FX (QUOTE YI)))

(SIMPTIMES (LIST (DIFFI H (QUOTE Y)) (DIFF1 FX (QUOTE X))|()())
(COND ((NOT (SETQ k

(M2

S

(QUOTE (PLUS [COEFFPT (A TRUE) N) (CCEFFP (B TRUE)(()
NIL))}

(RETURN NIL())

(SET_ A (COP (SASSOC (QUOTE A) W)))

(SETQ B (CDR (SASSOC (QUOTE B) W))(

(COND ((OR (ZEROP[A) (ZEROPt B)) (RETURN NIL)))
(SETQ N

(COND

((AND (EQ (CAR A) (QUOTE PLUS)((EQ (CAR B) (QUOTE PLUS)}(

(MATCHSUM (CDR (SIMPMINUS (LIST B))) (CDR A)))

(T (SIMPQUOTIENT (LIST (SIMPMINUS (LIST B)) A())))

(COND ((NOT (NUMBERP N(((RETURN NIL()(
(RETURN

(LIST

(QUOTE EQUAL)
(QUOTE CO)
(SIMPQUOTIENT

(LIST

(SIMPEXPT

(LIST

(QUOTE E)

(REPLACE

(LIST (CONS

(QUOTE U(

(SIMPTIMES (LIST (QUOTE Y) (SIMPEXPT (LIST (QUOTE X) N()))))
(SIN

(LIST

254

{QUOTE QUOTIENT)

1
{LIST

{QUOTE TIMES)

{QUOTE U)

(LIST

{QUOTE PLUS)

N

{REPLACE

{LIST {CONS {QUOTE Y)

(SIMP {LIST

{QUOTE QUOTIENT)

{QUOTE U)
{LIST {QUOTE EXPT) {QUOTE X) N)))))

H 1)))

(QUOTE U)))))

{QUOTE X)))))I))))

ADDITIONAL METHODS

DEFINE

(((REVERSEVAR

(LAM_DA

(EXP)

(FROG (Y)

{RETURN (COND ((SETQ Y
{LINEAR (SUBLIS {QUOTE ((X • Y) (Y • X) (DX • DY) {OY • DX)))

EXP }))

{SUBLIS (QUOTE ((X . Y) (Y . X))) Y))

(T NIL))))))))

DEFINE

({(XAYB

{LAMBDA

(EXP)

(FROG (W

M

N

XYDMDY

XYDNDX

XM

YN

COEXM

COEYN

XAYB

A

B

FORM

XYDIFF

A1

A2

BI

B2

CI

C2

DET

FACT)

(COND {(NOT {SETQ W

255

(M2
EXP
(QUUTE(PLUS(COEFFPT(MTRUE)DX){COEFFPT{NTRUE)DY)))NIL)))

(RETURNNIL)))
{SETQM{REPLACEW(QUOTEM)))
{SETQN{REPLACEW(QUOTEN}))(SETQXYOMDY
(EXPAND2(SIMPTIMES(LIST(QUOTEX) (QUOTEY)(DIFFIM(QUOTEY))))))(SETQXYDNDX
{EXPAND2(SIMPTIMES(LIST(QUOTEX) (QUOTEY)(DIFFIN(QUOTEX))))))

{SETQXM(EXPAND2(SIMPTIMES(LIST(QUOTEX)M))})
(SETQYN(EXPAND2 {SIMPTIMES (LIST -I (QUOTE Y) N))))

(SETQ XYDIFF (SIMPDIFFERENCE {LIST XYDNDX XYDMDY)))
(SETQ W

(M2

{COND {(EQ (CAR YN) (QUOTE PLUS)) (CADR YN)) (T YN))

(QUOTE (TIMES (COEFFTT (B FREEXY)} (COEFFTT (C TRUE))))
NIL))

(SETQ BI (REPLACE k (QUOTE B)))

(SETQ FACT (REPLACE W (QUOTE C}))
(SETQ YN

(COND ((EQ (CAR YN) (QUOTE PLUS)) (CONS (QUOTE PLUS) (CDDR YN}))
(T O)))

{SETQ FORM

(LIST

(QUOTE PLUS)

{CONS (QUOTE COEFFPT)

(CONS (QUOTE {B FREEXY))

(COND ((EQ {CAR FACT) (QUOTE TIMES)} (CDR FACT))

(T (LIST FACT))))}

(QUOTE (COEFFPP (D TRUE)))))

SETQ W (M2 XM FORM NIL))

SETQ AI (REPLACE W (QUOTE B)))

SETQ XM {REPLACE W (QUOTE D)})

SETQ W (M2 XYDIFF FORM NIL))

SET_ CI {REPLACE W (QUOTE B}))

SETQ XYDIFF {REPLACE W (QUOTE D))}

COND {{M2 YN 0 NIL) {GO B2ZERO)})
SETQ W

{M2

(COND ((EQ (CAR YN) {QUOTE PLUS)) (CAOR YN}) (T YN))

(QUOTE (TIMES {COEFFTT {B FREEXY)) (COEFFTT {C TRUE})))
NIL))

(SETO B2 (REPLACE W (QUOTE B)))

{SETQ FACT (REPLACE W (QUOTE C)}}
{SETQ FORM

(LIST

(QUOTE PLUS)

(CONS (QUOTE COEFFPT)

(CONS (QUOTE (B FREEXY))

(COND ((EQ (CAR FACT) (QUOTE TIMES)) (CDR FACT))

(T {LIST FACT))))}

(QUOTE (COEFFPP {D TRUE))))}

{SETQ W (M2 XM FORM NIL))

(SETQ A2 (REPLACE _ (QUOTE B)))
B2BACK

{SETQ W {M2 XYDIFF FORM NIL))

{SETQ C2 (REPLACE W (QUOTE B)))
(SETQ DET

(SIMP {LIST

256

(QUOTE DIFFERENCE)
(LIST {QUOTE TIMES) B2 A1)

(LIST (QUOTE TIMES) B! A2))))

(COND ((M2 DET 0 NIL) (RETURN NIL))I

(SETQ B

(SIMP (LIST

(QUOTE QUOTIENT)

(LIST

(QUOTE DIFFERENCE)

(LIST (QUOTE TIMES) B2 CI)

(LIST (QUOTE TIMESI B! C2))

DET)))

(SETQ A

(SIMP (LIST

(QUOTE QUUTIENT)

(LIST

(QUOTE DIFFERENCE)

{LIST (QUOTE TIMES) A) C2)

(LIST (QUOTE TIMES} A2 CI))

DET)))

(SETQ XAYB

(SIMPTIMES (LIST {LIST (QUOTE EXPT) (QUOTE X) A)

(LIST (QUOTE EXPT) (QUOTE Y) B) 1)_

(RETURN (EXACT (LIST

(QUOTE PLUS)
(LIST

(QUOTE TIMES)

(QUOTE DX)

(EXPAND2 (SIMPTIMES (LIST M XAYBII))
(LIST

(QUOTE TIMES)

(QUOTE DY)

(EXPAND2 (SIMPTIMES (LIST N XAYB))) l)))

B2ZERO

(SETQ B2 O)

(SETQ W

(M2

(COND ((EQ (CAR XM) (QUOTE PLUS}) (CADR XM)) (T XM))

(QUOTE (TIMES (COEFFTT (B FREEXY)) (COEFFTT (C TRUE))))

NIL))

(SETQ A2 (REPLACE W (QUOTE B)))

(SETQ FACT (REPLACE W (QUOTE CI))

(SETQ FORM

(LIST

(QUOTE PLUS)

(CONS (QUOTE COEFFPT)

(CONS (QUOTE (B FREEXY))
{COND ((EQ (CAR FACT) (QUOTE TIMES)} (C_R FACT))

(T (LIST FACT)))))

(QUOTE (COEFFPP (D TRUE)))))

(GO B2BACK))))))

DEFINE

(((KAMKE329

(LAMBDA

(EXP)

(PROG (W DET AA BB)

(CONO

((NOT

(SETQ

W

257

(M2
(EXPAND2 EXP)
{QUOTE

)PLUS
(COEFFPT {C M1

)QUOTE)PLUS (COEFFPT)ALPHA FREEXY) X)
(COEFFPT

(A FREEXY)

(EXPT X (P FREEXY))
(EXPT Y (Q FREEXY))))))

YPR)

(COEFFPT (BETA FREEXY) Y)
(COEFFPT

(B FREEXY)
(EXPT X)R FREEXY))
(EXPT Y (S FREEXY)))))

NIL)))
(RETURN NIL))

()NOT (AND

(M2 1 (REPLACE W [QUOTE (DIFFERENCE P R))) NIL)

(M2 I (REPLACE W (QUOTE {DIFFERENCE S _))) NIL)))
(RETURN NIL) l

({M2
O
(SETQ DET
(REPLACE W

(QUOTE (DIFFERENCE (TIMES A BETA) (TIMES B ALPHA)))))
NIL)

(RETURN NIL)))

(SETQ AA

{REPLACE W

(QUOTE [QUOTIENT)DIFFERENCE (TIMES Q BETA) [TIMES R ALPHA)I
(EVAL OCT) I)))

)SETQ BB

(REPLACE W

(QUOTE)QUOTIENT {DIFFERENCE [TIMES Q B) (TIMES R All (EVAL DET)))))
(RETURN

(REPLACE

W

(QUOTE

)EQUAL CO

)PLUS

(QUUTIENT (TIMES (EXPT Y (TIMES A (EVAL AA)))

(EXPT X (TIMES B (EVAL AA))))

(EVAL AA))

)QUOTIENT (TIMES (EXPT Y)TIMES ALPHA (EVAL BB)))

(EXPT X [TIMES BETA (EVAL BB))!)
(EVAL BB))))))))))))

EDGE

DEFINE))

(FREE(LAMBDA(A)(COND((ATOM A)(NOT(EQ A VAR)))

(T(AND(FREE(CAR A)I(FREE (CDR A)))))))))
DEFINE{(

(EDGE[LAMBDA(EXP VAR)IPRDG

{PROBL ARCLOG POSEXPT OLDPROBL ONEMORE NCNRAT NEWB' G W CONST NONCON

B ANSW L FF AORA' H A

258

NIIqTXP A' b' LDERIV M)

(SETQ B' (TRIGSUBST EXP})
(SETQ NINTXP(M2 B'(QUOTE(TIMES(BB MI(QUOTE(EXPT(A (QUOTE(LAMBDA(XI(NOT

(FREE X)))))(N

(_JUOTE(LAMBDA(X)(NOT(NUMBERP X))))))))
(COEFFTT(C TRUE))NIL))

(GO BEG)

LOOP(COND((RAT8 B' (GO FINISHED)))

(COND((EQ(CAR NONCON)(QUOTE TIMES))(GO AA)))

(SETQ FF NONCON)

(GO GUESS}

AA(SETQ LDERIV(CONS(QUOTE PLUS)(MAPLIST (CDR NONCON)
(FUNCTION(LAMBDA(C)(DIFFI(CAR C)VAR))))))

(SETQ M(COR NONCON))

(SETQ L(CDR LDERIV))

LOUP2(COND((RAT8(CAR M))(GO SKIP)})

(COND((NOT(M2 (CHOICE (CAR L) LDER[V)

(LIST(QUOTE PLUS){LISI(QUOTE TIMES){CAR M)

(QUOTE(COEFFTT(A TRUE))))

(QUUTE(B TRUE))) NIL)) (GO ENDP)))

SKIP(SETQ NONRAT(CAR M))

(SETQ M(CDR M))

(SETQ L(CDR L))

{COND(M(GO LOOP2)))

(SETQ FF NONRAT)

(GU GUESS)

ENDP(SETQ FF(CAR M))

GUESS(SETQ ARCLOG NIL)

(SETQ POSEXPT NIL)

{SETQ G(COND

((E_(CAR FF)(QUOTE COS)){PROG2(SETQ AORA' T)(LIST(QUOTE SIN)(CADR FF})))

((Eq(CAR FF)(QUOTE SIN})(PROG2(SETC AURA' T)(LIST{QUOTE COS)(CADR FF))))

((EQ(CAR FF)(QUOTE LOG)I{PROG2(SETQ AORA' NIL)FF))

((EQ(CAR FF)IQUOTE ARCSIN))(PROG2(SETQ AORA' NIL)FF))

{(EQ(CAR FF)(QUOTE ARCTAN)){PROG2ISETQ AORA' NIL)FF))

((Eq(CAR FF)(QUOTE EXPT))(COND

{(FREE(CADR FF))(PROG2(SETQ AURA' T)FF)}

{(NOT(NUMBERP(CADDR FFI})(PROG23(SETQ AORA' TI(LIST(QUOTE EXPT)(CADR FF)

(SIMPPLUS(LIST(CADDR FF)I)))

(SETQ POSEXPT T}))

((GREATERP(CADDR FF)O){PROG2B{SETQ AORA' T}(LIST(QUOTE EXPT)(CADR FF)

(SIMPPLUS(LIST(CADDR FF)I)I}

(SETQ POSEXPT T)))

((LESSP(CADDR FF)-I)(PROG2{SETQ AORA' T)(LIST(QUOTE EXPT)

(CADR FF){SIMPPLUS(LIST{CADDR FF)I)))))

((AND(EQUAL(CADDR FF)-O.5)(SETQ W(M2(CADR FF)

IQUOTE(PLUS(COEFFP{A FREEO))(COEFFT(C M2(QUOTE(EXPT(D TRUE)(N EVEN))INIL)

(B FREEI)))NIL_))

(PROG23(SETQ AORA' T)(REPLACE W

(QUOTE(ARCSIN(EXPT(QUOTIENT(TIMES(MINUS B)C)A)O.5)I))(SETQ ARCLOG T)))

((EQUAL(CADDR FF)-I){COND(ISETQ W(M2(CADR FF)

(QUOTE(PLUS(COEFFP(A FREEO)){COEFFT(C M2(QUOTE(EXPT(D TRUE)(N EVEN))}NIL)

(B FREE})))NIL))

259

(PROG23(SETQ AORA' T)(REPLACE W(QUOTE(ARCTAN(EXPT(QUOTIENT(TIMES B CIA)O.5)))I
(SETQ ARCLOG T)))

(T(PRDG23(SETQ AORA' T) ILIST(QUOTE LOG)(QUOTE E)(CADR FF))(SETQ ARCLOG T)))))
(T(ERROR(QUOTE(NOT YET ACCOUNTED FOR))))))

(T(ERROR(QUOTE(GUESS NOT YET FINISHED))))I)

GOGO(COND((NOT AORA')IGO A'SET)))

(SETQ A(SIMPQUOTIENT(LIST NONCON(DIFFI G VAR))))

(SETQ A(COND((AND ARCLOG(SETQ W(M2 A(QUOTE

(TIMES(B M2(QUOTE(EXPT(PLUS(COEFFP(BI FREEO))

(COEFFT(B2 TRUEI(B3 FREE)))-II)NIL)

(C M2(QUOTE(PLUS(COEFFP(CI FREEO))

(COEFFT(C2 TRUEI)(C3 FREE))I)NIL)(COEFFTT(D TRUE))))NIL)))

(COND((SETQ M(MATCHSUM(CDADR(REPLACE W(QUOTE B)))

(CDR(REPLACE W(QUOTE C)))))

(SIMPQUOTIENT(LIST(REPLACE WIQUOTE D))M)))
(T A)))

(T A)))
(SETQ A'(DIFFI A VAR))

(SETQ NEWB'(COND((NOT(EQ(CAR A')(QUOTE PLUS)I)(SIMPMINUS(LIST

(SIMPTIMES(LIST G A')))))

{T(TIMESLOOP(SIMPMINUS(LIST G))(CDR A)))))
(GO LOOPS)

A'SET(SETQ A'(SIMPQUOTIENT(LIST NONCON G)))

(COND((FINDI(SETQ A(INTEGRATE A' VAR))(QUOTE INTEGRAL))(GO KILL)))

(SETQ NEWB'(COND((EQ(CAR A)(QUOTE PLUS))(TIMESLOOP(SIMPMINUS
(LIST(DIFFI G VAR)))(CDR A)))

(T(SIMPTIMES(LIST -I(DIFF1G VAR)A)))))

LOOPS(SETQ PROBL(CONS(LIST B' CONST NONCON GFF A A' ARCLOG POSEXPT)PROBL))
(COND((AND ARCLOG(NOT(FREE A)))(SETQ ARCLOG I)))

(COND((AND POSEXPT(NOT(FREE A)))(SETQ POSEXPT i)))
(PRINT NEWB')

(SETQ B _ NEWB')

BEG (SETQ W(M2 B'(QUOTE(TIMES(COEFFTT(A FREE))(COEFFTT(B TRUE))))NIL))
(SETQ CONST(REPLACE W(QUOTE A)))

(SETQ NONCON(REPLACE W(QUOTE B)))

(SEI_ L PROBL)

LOOP3(CONO({NULL L)(GO PROGRESS))

((M2{CADDAR L)NONCON NIL)(GO A)))
{SETQ L(CDR L))

(GO LOOPB)

A(SETQ M PROBL)

(SETQ W CONST)

A2(SETQ W(SIMPTIMES(LIST W (CADAR M))))

(CONO((EQ M L)(GO A1)))

(SETQ M(CDR M))

(GO A2)

AI(COND((M2 W(CADAR L)NIL)(GO KILL)))

(RPLACA(CDAR L)

(SIMPQUOTIENT(LIST(CADAR L)(SIMPDIFFERENCE(LIST(CADAR L)W)))))

(SETQ ANSW O)

SKIP2(SETQ L PROBL)

LOOP4(COND((NULL L)(RETURN ANSW)))

(SETQ ANSW(SIMPTIMES(LIST(CADAR L)

260

(SIMPPLUS(LIST(SIMPTIMES(LIST(CAODR(CDDOAR LIIICAR(CDODAR L))))ANSW)))))

(SETQ L(COR L))

(GO LOOP4)

FINISHED(SETQ ANSW(INTEGRATE B' VAR))

(GO SKIP2)

PROGRESS(COND((RAT8 B')IGO FINISHEO))

(ONEMOREIRETURNIQUOTEINO PROGRESS))))

((EQUAL POSEXPT I)(SETQ ONEMORE T))

((EQUAL ARCLOG I)(SETQ ONEMORE T)))

(COND((NOT NINTXP)IGO LOOP)))

(SETQ WIM2 B'(QUOTE(TIMES(EXPT(A EQUAL(REPLACE NINTXP(QUOTE A)))

(M TRUEI))ICOEFFTT(D TRUE))))NIL))

(COND(INULL W)(ERROR(QUOTE NINTXP))))

(SETQ MISIMPOIFFERENCEILIST(REPLACE NINTXP(QUOTE N))

(REPLACE W(QUOTE M)I)))

(COND((NOT(NUMBERP M)IIERROR(LISTIQUOTE NINTXP|M)))

{(ZEROP M)(GO LOOP))

[(GREATERP M O)(GO NI))

(ONEMORE(RETURN(QUOTE(NO PROGRESS NINTXP)))))

[SETQ ONEMORE T)

(GO LOOP)
NI(SETQ ANSWILIST[QUOTE INTEGRAL) NIL (LISTIQUOTE QUOTE)B') (LISTIQUOTE QUOTE)

VAR))I

(GO SKIP2)

KILL) (SETQ PROBL(CDR PROBL))

KILL2ICOND((NULL PROBLI(GO MAYBEONEMORE)))

(SETQ L(CAR PROBL))
(COND{(CAR(CDDDDR(CDDDDR L)))(GO POSEXPT)))

(COND((NOT(CADDDR (CDDDOR L)))IGO KILLI))

((EQ(CAR(CADDDR L))IQUOTE LOG))IGO KILL1))

)

(SETQ FFICADDDR(CDR L)))

ISETQ B'ICAR L))

(SETQ CONST(CADR L))

(SETQ NONCON(CAODR L))

(SETQ AORA' T)
(SETQ G(COND((EQ(CAR(CADDDR L))(QUOTE ARCSIN))

(LIST(QUOTE EXPT)(CADR FF)(SINPPLUS(LIST(C_DDR FF)I))))

(TILIST(QUOTE LOG)(QUOTE E)(CADR FF)))))

(SETQ PROBL[CDR PROBL))

(SETQ ONEMORE NIL)

(GO GOGO)

KILL(SETQ OLDPROBL PROBL)

(GO KILL2)

MAYBEONEMORE(COND(ONEMORE(RETURN(QUOTE(I GIVEUP)))))

(PRINT(LIST(QUOTE ONEMORE)OLDPROBL))

(SETQ PROBL OLDPROBL)

(SETQ ONEMORE T)

(GO LOOP)

POSEXPT(CONO({EQUAL(CAR(CDDDDR{CDDDDR L)))I)(GO KILLI)))

(SETQ FF(CAOODR(CDR L)))

(SETQ POSEXPT I)

(SETQ AORA' T)

(SETQ B' (CAR L))

(PRINT(LIST(QUOTE POSEXPT)B'))

(SETQ CONSTICADR L))

{SETQ NO/_CON(CAOOR L))

261

(SETQGFF)
(SETQPROBL(CDRPROBLI)
(GOGOGO)
))}))
DEFINE({

(TRIGSUBST{LAMBDA(EXPI

(COND

{(ATOM EXP)EXP)

((_OT(MEMBER(CAR EXP)(QUOTE(TAN COT SEC CSC))))

(SIMP(MAPLIST EXP{FUNCTION(LAMBDAIC)ITRIGSUBSTICAR C)))))))

I(EQ(CAR EXP)(QUOTE TAN)){SIMPQUOTIENT(LIST(LIST(QUOTE SIN)(CADR EXP))
(LIST(QUOTE COS)(CADR EXP)))))

((EQ(CAR EXP)(QUOTE COT_)(SIMPQUOTIENT(LIST(LIST(QUOTE COS)(CADR EXP}|

(LIST(QUOTE SIN)(CADR EXP)))I)

((EQ(CAR EXP)(QUOTE SECII(SIMPQUOTIENT(LIST I(LISTIQUOTE COS)(CADR EXP)))I)
)))))

BIBLIOGRAPHY

i.

2,

3.

4.

5°

6.

7.

8.

9.

I0.

II.

12.

Anderson, R., "Syntax-Directed Recognition of Hand-Printed Two-

Dimensional Mathematics," Memorandum 64, Project TACT, Harvard

University, Cambridge, Mass., July 1967.

Baylor, G.W., and Simon, H.A., "A Chess Mating Combination Pro-

gram," Proceedings 1966 Sprin_ Joint Computer Conference, Spartan

Books, Washington, D.C., pp. 431-447.

Black, F., "A Deductive Question Answering System," doctoral disser-

tation, Harvard University, Cambridge, Mass., 1964.

Bobrow, D.G., "A Question Answering System for High School Algebra

Word Problems," Proceedings of the 1964 Fall Joint Computer Confer-

ence, Spartan Press, Baltimore, Maryland.

Bond, E., et.al., "An Experimental Formula Manipulation Compiler,"

Proceedings 1964 ACM National Conference, pp. K2.1-I-K2.1-11.

Brown, W.S., Hyde, J.P., and Tague, B.A., "The ALPAK System for

Non-numerical Algebra on a Digital Computer - II," Bell System

Tech. Journal XLIII, No. 2, 1964, pp. 785-804.

Brown, W.S., Rational Exponential Expressions and a Conjecture Con-

cerninK _ and e, Bell Telephone Laboratories, Murray Hill, New Jer-

sey, 1967.

Caracciolo di Forino, A., Spanedda, L. and Workenstein, N., "PKNON-IB

--A Programming Language for Symbol Manipulation," University of Pisa,

Italy, 1966.

Caviness, B.F., "On Canonical Forms and Simplifications," doctoral

dissertation, Carnegie Institute of Technology, 1967.

Christensen, C., "On the Implementation of AMBIT, A Language for

Symbol Manipulation," Communications of the ACM, Vol. 9, No. 8,

August 1966.

Crisman, P.A. (ed.), The Compatible Time-Sharin K System: A Program-

mer's Guide (second edition), MIT Press, Cambridge, Mass., 1965.

Collins, G.E., "PM, A System for Polynomial Manipulations, " Co_u-

nications of the ACM, Vol. 9, No. 8, August 1966, pp. 578-589.

262

263

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Collins,G.E.,"SubresultantsandReducedPolynomialRemainder
Sequences,"Journal of the ACM, Vol. 14, No. I, January 1967,

pp. 128-142.

Davis, M., Putnam, H., and Robinson, J., "The Decision Problem for

Exponential Diophantine Equations," Annals of Math., Vol. 74, 1961.

Engelman, C., "MATHLAB: A Program for On-Line Assistance in Sym-

bolic Computations," Proceedings 1965 FJCC, Spartan Books, Wash-

ington, D.C.

Evans, J.W., Harary, F., and Lynn, M.S., "On the Computer Enumera-

tion of Finite Topologies," Communications of the ACM, Vol. i0,

No. 5, May 1967, pp. 295-297, 313.

Evans, T.G., "A Program for the Solution of a Class of Geometry-

Analogy Intelligence-Test Questions," Report AFCRL-64-884, Air

Force Cambridge Research Laboratories, Hanscom Field, Mass., 1964.

(A paper based on this dissertation was presented at the 1964 Spring

Joint Computer Conference.)

Feigenbaum, E.A., and Feldman, J. (eds.), Computers and Thought,

McGraw-Hill, New York, 1963.

Fenichel, R.R., "An On-Line System for Algebraic Manipulations,"

doctoral dissertation, Harvard University, July 1966, (also avail-

able as Report MAC-TR-35, Project MAC, MIT, Cambridge, Mass., Dec.

1966).

Fenichel, R.R., and Moses, J., "A New Version of CTSS LISP," Memo-

randum MAC-M-296, Project MAC, MIT, Cambridge, Mass., Dec. 1966.

Goldberg, S.H., "Solution of an Electrical Network Using a Digital

Computer," M.S. Thesis, MIT, Cambridge, Mass., 1959.

Greenblatt, R.D., Eastlake, P.E., and Crocker, S.D., "The Green-

blatt Chess Program," to appear in the Proceedings of the 1967 Fall

Joint Computer Conference.

Guzman, A., and Mclntosh, H.V., "CONVERT," Communications of the

ACM, Vol. 9, No. 8, August 1966, pp. 604-615.

264

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Haan, Bierens de, Nouvelle Tables d'Int_grals Defin_es, G.T. Stechert,

New York, 1939.

Hardy, G.H., The Integration of Functions of a Single Variable,

second ed., Cambridge Univ. Press, Cambridge, England, 1916.

Henneman, W., private communication, 1966.

Ince, E.L., Integration of Ordinary Differential Equations, 7th ed.,

Oliver and Boyd, London, 1963.

Iturriaga, R., "Contributions to Mechanical Mathematics," doctoral

dissertation, Carnegie Institute of Technology, Pittsburgh, Penna.,

April, 1967.

Jolley, L.B.W., Summation of Series, second edition, Dover, New York,

1961.

Kamke, E., Differentialgleichungen, L_sungsmethoden and L_sun_en,

Vol. I, second edition, J.W. Edwards, Ann Arbor, Mich., 1945.

Kaplansky_ I., An Introduqtion to Differential Algebra, Paris, 1957.

Klerer, M., and May, J., "An Experiment in a User Oriented Computer

System," Comm. A.C.M., vol. 7, No. 5, 1964, pp. 290-294.

Korsvold, K., "An On-Line Algebraic Simplify Program," Art. Intell.

Project Memo 37, Stanford Univ., Palo Alto, Calif., 1966.

McCarthy, J., et al., LISP 1.5 Programmer's Manual, MIT Press, Cam-

bridge, Mass., 1963.

Mclntosh, H.V., "Degeneracy of the Magnetic Monopole," Bull. of

Amer. Physical Society, series II, vol. 12, p. 699, 1967.

Manove, M., Bloom, S., and Engelman, C., "Rational Functions in MAT}{-

LAB," Proc. of the I.F.I.P. Working Conf. on S_mbol Manipulation Lan-

ua_, Pisa, Italy, Sept. 1966 (to appear).

Martin, W.A., "Sy]nbolic Mathematical Laboratory," doctoral disser-

tation, MIT, Cambridge, Mass., Jan. 1967 (also Report TR-36, Project

MAC, MET) •

Maurer, W.D., "A Table of Integrals Involving the Error Function and

Related Functions," Argonne National Laboratory, Reactor Engineering

Group, 1958.

Maurer, W.D., "Computer Experiments in Finite Algebra," Co___q__=_.,

vol. 9, No. 8, August 1966, pp. 589-603.

265

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Millen, J.K., "CHARYBDIS: A LISP Program to Display Mathematical

Expressions on Typewriter-Like Devices," presented at ACMSymposium

on Interactive Systems for Experimental Applied Mathematics, Wash.,
D.C., August 1967.

Minsky, M.L., "Steps Toward Artificial Intelligence," in Computers

and Thought, McGraw-Hill, New York, 1963.

Moses, J., "Solution of Systems of Polynomial Equations by Elimi-

nation," _, Vol. 9, No. 8, August 1966, pp. 634-
637.

Newell, A., Shaw, J.C. and Simon, H.A., "Report on a General Problem

Solving Program," in Computers and ThouKht, McGraw-Hill, New York,
1969.

Newell, A., Shaw, J.C. and Simon, H.A., "Empirical Explorations of

the Logic Theory Machine: A Case Study in Heuristics," in Computers

and Thought, McGraw-Hill, New York, 1963.

Newell, A., and Ernst, G., "The Search for Generality," Proc. IFIP

ConKress, 1965, Vol. I, pp. 17-24.

Newell, A., "Some Problems of Basic Organization in Problem Solving

Programs," in Self-Or_anizin_ Systems 1962, Yovits, M., Jacobi, G.

and Goldstein, G., editors, Spartan Books, 1962, pp. 393-423.

Norton, L.M., "ADEPT - A Heuristic Program for Proving Theorems of

Group Theory," Tech. Report TR-33. Project MAC, MIT, Cambridge,

Mass., Oct. 1966.

Perlis, A.J., iturriage, R., and Standish, T.A., "A Definition of

Formula ALGOL," Depart. of Computer Science, Carnegie Inst. of Tech.,

Pittsburgh, Penna., March 1966.

Persson, A., "Some Sequence Extrapolating Programs: A Study of Re-

presentation and Modeling in Inquiring Systems," Tech. Report CS50,

Computer Science Depart., Stanford Univ., Palo Alto, Calif., Sept.
1966.

Peterson, F.P., and Sims, C., "The Formulation of the Statement of

a Cobordism Structure Theorem," Mathematical Al_orithms_ Vol. I,

No. 3, July 1966, pp. I-Ii.

Petit Bois, G., Tables of Indefinite Integrals, Dover Publications,

New York, 1961.

Richardson, D., doctoral dissertation, Univ. of Bristol, Bristol,

England, 1966.

53. Risch, R.H., "The Problem of Integration in Finite Terms," Report

266

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

SP-2801,SystemsDevelopmentCorp.,SantaMonica,Calif., March1967.

Ritt, J.F., InteKration in Finite Terms, Columbia Univ. Press, New

York, 1947.

Sammet, J.E., "Survey of Formula Manipulation," Comm of the _,

Vol. 9, No. 8, Aug. 1966, pp. 555-569.

Sammet, J.E., "An Annotated Description Based Bibliography on the

Use of Computers for Non-Numerical Mathematics," ComputinK Review,

Vol. 7, No. 4, July 1966, pp. BI-B31.

Segovia, R. and Mclntosh, H.V., "Computer Analysis of Finite Groups,"

presented at 1966 Fall Joint Computer Conf.

Slagle, J.R., "A Heuristic Program that Solves Symbolic Integration

Problems in Freshman Calculus, Symbolic Automatic Integrator (SAINT),"

doctoral dissertation, MIT, 1961 (a paper based on this thesis is in

_omputers and ThouKht, McGraw-Hill, New York, 1963).

Slagle, J.R., "Experiments with a Deductive Question Answering Pro-

gram," Comm. A(_M, Vol. 8_ 1965, pp. 792-798.

Spiegel, M.R., Applied Differential Equations, Prentice-Hall, Engle-

wood Cliffs, NewJersey, 1958.

Tarski, A., A Decision Method for Elementary Al_ebra and Geometry,

second ed., Univ. of Calif. Press, Berkeley, Calif., 1951.

Teitelman, W., "FLIP - A Format List Processor," Memo MAC-M-263,

Project MAC, MIT, Cambridge, Mass., 1965.

Tobey, R.G., Bobrow, R.J. and Zilles, S., "Automatic Simplification

in FORMAC," Proc. 1965 FJCC, Spartan Books, pp. 37-57.

Tobey, R.G., doctoral dissertation, Harvard Univ., Cambridge, Mass.,

1967.

van der Waerden, B.L., Modern Al_ebra, vol. I, Frederick Unger, New

York, 1953.

Weizenbaum, J., "ELIZA - A Computer Program for the Study of Natural

Language Communication between Man and Machine," Comm_, Vol. 9,

No. i, Jan. 1966, pp. 36-45.

BIOGRAPHYOFTHEAUTHOR

JoelMoseswasbornin PetachTikvah,Israel, onNovember25,19hl.
HeenteredtheUnitedStatedonSeptemberi, 1954andbecamea naturalized

citizenin 1960. AftergraduatingfromMidwoodHighSchool,Brooklyn,

NewYork,in June1959,heenteredColumbiaCollegefromwhichhegraduated
MagnaCumLaudein June1962.Duringthis timeheheldaNewYorkState

EngineeringandScienceScholarship.Hethenenrolledin the Graduate

Facultiesof ColumbiaUniversityandheldanIBMFellowshipfor theyear

1962-1963.HereceivedaMasterof Arts in AppliedMathematicsin June

1963.Sincethat timehehasbeena graduatestudentat MITin its Depart-

mentof Mathematicsanda researchassistantat its ResearchLaboratoryof
ElectronicsandProjectMAC.

TheauthorhasbeenemployedbyIBM'sWatsonResearchLaboratory,New

York,NewYork,andBostonAdvancedProgrammingDepartment,Cambridge,

Massachusetts,andbytheLincolnLaboratory,Lexington,Massachusetts.

BehasacceptedemploymentasAssistantProfessorin theDepartmentof
ElectricalEngineeringat MIT.

Hispublicationsinclude:

"Solutionof Systemsof PolynomialEquationsbyElimination,"Co_munl-

cations of the ACM 9, 8 (August 1966), pp. 63h-637.

The author is a member of The American Mathematical Society, The

Association for Computing Machinery, Phi Beta Kappa, and Sigma Xi.

267

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Socutity clmaalflcittcm ol title, body ol abmtrect _d indextn a _notatton must be enfered when the ov_ell t_oott is ¢lmostfled)

I. 2&. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

ORIGINATING ACTIVITY (Comormte _thot)

Massachusetts Institute of Technology

Project MAC
2b. GROUP

None

3. REPORT TITLE

Symbolic Integration

4. OESC_IPTIVE NOTES (Type ol ,*port _d anclu*l,* d*te*)

Ph.D. Thesis, Department of Mathematics, September 1967

s. AUTHOR(S) ('Last ._e. [lilt .llae, inlf|_l)

Moses, Joel

6. REPORT DATE

December 1967

Sa.

b.

c.

d.

CONTRACT OR GRANT NO.

Office of Naval Research, Nonr-4102(01)
PRO_ECT NO
NR 048-189

003-09-01

I0. AVA}LABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

II. SUPPLEMENTARy NOTES

None

268 66
&. TOTAL NO. OF PAGES 7b. NO. OF REFS

i ORIGINATOR'S REPORT NUMBER(S}

MAC-TR-47 (THESIS)

• OTHER REPORT NO(SJ (Any om_ n_b_= th*t mmr b*

• moJ_ned 1hi* ,ePo¢O

12. SPONSORtNG MILITARY ACTIV;TY

Advanced Research Projects Agency

3D-200 Pentagon
Washington, D.C. 20301

13. ABSTRACT

SIN and SOLDIER are heuristic programs written in LISP which solve symbolic

integration problems. SIN (Symbolic INtegrator) solves indefinite integration prob-

lems at the difficulty approaching those in the larger integral tables. SIN contains

several more methods than are used in the previous symbolic integration program SAINT,

and solves most of the problems attempted by SAINT in less than one second. SOLDIER

(SOLution of Ordinary Differential Equations Routine) solves first-order, first-degree,

ordinary differential equations at the level of a good college sophomore and at an

average of about five seconds per problem attempted. The differences in philosopy and

operation between SAINT and SIN are described, and suggestions are made for extending

this work.

14. KEY WOROS

Algebraic manipulation

Computers

Machlne-aided cognition

Multiple-access computers

On-llne computers

Real-tlme computers

Symbolic integration

T :[me- sha rtng

Time-shared computers

DD ,'O'a...,1473 (M.I.T.) _c_ss=IED
Secmity Class/fication

